Рефераты Изложения История

Атомная или ковалентная химическая связь. Ковалентные связи

Впервые о таком понятии как ковалентная связь ученые-химики заговорили после открытия Гилберта Ньютона Льюиса, который описал как обобществление двух электронов. Более поздние исследования позволили описать и сам принцип ковалентной связи. Слово ковалентный можно рассматривать в рамках химии как способность атома образовывать связи с другими атомами.

Поясним на примере:

Имеется два атома с незначительными отличиями в электроотрицательности (С и CL, С и Н). Как правило, это которых максимально близко к строению электронной оболочки благородных газов.

При выполнении данных условий возникает притяжение ядер этих атомов к электронной паре, общей для них. При этом электронные облака не просто накладываются друг на друга, как при Ковалентная связь обеспечивает надежное соединение двух атомов за счет того, что перераспределяется электронная плотность и изменяется энергия системы, что вызвано "втягиванием" в межъядерное пространство одного атома электронного облака другого. Чем более обширно взаимное перекрытие электронных облаков, тем связь считается более прочной.

Отсюда, ковалентная связь - это образование, возникшее путем взаимного обобществления двух электронов, принадлежащих двум атомам.

Как правило, вещества с молекулярной кристаллической решеткой образуются посредством именно ковалентной связи. Характерными для являются плавление и кипение при низких температурах, плохая растворимость в воде и низкая электропроводность. Отсюда можно сделать вывод: в основе строения таких элементов, как германий, кремний, хлор, водород - ковалентная связь.

Свойства, характерные для данного вида соединения:

  1. Насыщаемость. Под этим свойством обычно понимается максимальное количество связей, которое они могут установить конкретные атомы. Определяется это количество общим числом тех орбиталей в атоме, которые могут участвовать в образовании химических связей. Валентность атома, с другой стороны, может быть определена числом уже использованных с этой целью орбиталей.
  2. Направленность . Все атомы стремятся образовывать максимально прочные связи. Наибольшая прочность достигается в случае совпадения пространственной направленности электронных облаков двух атомов, поскольку они перекрывают друг друга. Кроме того, именно такое свойство ковалентной связи как направленность влияет на пространственное расположение молекул то есть отвечает за их "геометрическую форму".
  3. Поляризуемость. В основе этого положения лежит представление о том, что ковалентная связь существует двух видов:
  • полярная или несимметричная. Связь данного вида могут образовывать только атомы разны видов, т.е. те, чья электроотрицательность значительно различается, либо в случаях, когда общая электронная пара несимметрично разделена.
  • возникает между атомами, электроотрицательность которых практически равна, а распределение электронной плотности равномерно.

Кроме того, существуют определенные количественные :

  • Энергия связи . Данный параметр характеризует полярную связь с точки зрения ее прочности. Под энергией понимается то количество тепла, которое было необходимо для разрушения связи двух атомов, а также то количество тепла, что было выделено при их соединении.
  • Под длиной связ и в молекулярной химии понимается длина прямой между ядрами двух атомов. Этот параметр также характеризует прочность связи.
  • Дипольный момент - величина, которая характеризует полярность валентной связи.

Данная статья повествует о том, что такое ковалентная неполярная связь. Описываются ее свойства, типы атомов, которые ее образуют. Показано место ковалентной связи среди других видов соединений атомов.

Физика или химия?

Есть в обществе такой феномен: одна часть однородной группы считает другую менее понятливой, более неуклюжей. Например, англичане смеются над ирландцами, музыканты, играющие на струнных, - над виолончелистами, жители России - над представителями чукотского этноса. К сожалению, наука не исключение: физики считают химиков второсортными учеными. Однако, делают они это зря: отделить, где физика, а где химия порой весьма непросто. Таким примером могут служить способы соединения атомов в веществе (например, ковалентная неполярная связь): строение атома - однозначно физика, получение из железа и серы сульфида железа со свойствами, отличными и от Fe, и от S - точно химия, а вот как из двух разных атомов получается однородное соединение - ни то ни другое. Это нечто посередине, но традиционно науку о связях изучают как раздел химии.

Электронные уровни

Количество и расположение электронов в атоме определяют четыре квантовых числа: главное, орбитальное, магнитное и спиновое. Так, согласно сочетанию всех этих чисел, на первой орбитали существуют только два s-электрона, на второй - два s-электрона и шесть p-электронов и так далее. С ростом заряда ядра увеличивается и количество электронов, заполняя все новые и новые уровни. Химические свойства вещества определяются тем, сколько и каких электронов находится в оболочке их атомов. Ковалентная связь, полярная и неполярная, образуется, если на внешних орбиталях двух атомов находятся по одному свободному электрону.

Образование ковалентной связи

Для начала надо отметить, что говорить «орбита» и «положение» в отношении электронов в электронной оболочке атомов некорректно. Согласно принципу Гейзенберга, определить точное местонахождение элементарной частицы невозможно. В данном случае корректнее было бы говорить об электронном облаке, как бы «размазанном» вокруг ядра на конкретном расстоянии. Итак, если у двух атомов (иногда одинаковых, иногда разных химических элементов) есть по одному свободному электрону, они могут объединять их на общую орбиталь. Таким образом, оба электрона принадлежат двум атомам сразу. Этим путем образуется, например, ковалентная неполярная связь.

Свойства ковалентных связей

Свойств у ковалентной связи четыре: направленность, насыщаемость, полярность, поляризуемость. В зависимости от их качества будут меняться химические свойства получающегося вещества: насыщаемость показывает, сколько связей способен создать этот атом, направленность показывает угол между связями, поляризуемость задается смещением плотности в сторону одного из участников связи. Полярность же связана с таким понятием, как электроотрицательность, и указывает на то, чем ковалентная неполярная связь отличается от полярной. В общих чертах электроотрицательность атома - это способность притягивать (или отталкивать) электроны соседей в устойчивых молекулах. Например, самыми электроотрицательными химическими элементами можно назвать кислород, азот, фтор, хлор. Если электроотрицательность двух разных атомов совпадает, появляется ковалентная неполярная связь. Чаще всего это происходит, если в молекулу соединяются два атома одного химического вещества, например H 2 , N 2 , Cl 2 . Но это не обязательно так: в молекулах PH 3 ковалентная связь тоже неполярная.

Вода, кристалл, плазма

В природе существует несколько видов связей: водородная, металлическая, ковалентная (полярная, неполярная), ионная. Связь задается строением незаполненной электронной оболочки и определяет как структуру, так и свойства вещества. Как следует из названия, металлическая связь присуща только кристаллам определенных химических веществ. Именно тип связи атомов металлов между собой задает их способность проводить электрический ток. Фактически современная цивилизация построена на этом свойстве. Вода, самое важное вещество для человека, является результатом соединения ковалентной связью одного атома кислорода и двух водорода. Угол между двумя этими соединениями и задает уникальные свойства воды. Многие вещества, помимо воды, обладают полезными свойствами только потому, что их атомы соединяет ковалентная связь (полярная и неполярная). Ионная связь чаще всего существует в кристаллах. Наиболее показательными являются полезные свойства лазеров. Сейчас они бывают разными: с рабочим телом в виде газа, жидкости, даже органического красителя. Но оптимальным соотношением мощности, размера и стоимости обладает все же твердотельный лазер. Однако ковалентная неполярная химическая связь, как и другие виды взаимодействия атомов в молекулах, присуща веществам в трех агрегатных состояниях: твердом, жидком, газообразном. Для четвертого агрегатного состояния вещества, плазмы, говорить о связи бессмысленно. Фактически это сильно ионизированный разогретый газ. Однако в состоянии плазмы могут находиться молекулы твердых при нормальных условиях веществ - металлов, галогенов и т.д. Примечательно, что это агрегатное состояние вещества занимает наибольший объем Вселенной: звезды, туманности, даже межзвездное пространство представляют собой смешение разных видов плазмы. Мельчайшие частицы, которые способны пробить солнечные батареи спутников связи и вывести из строя систему GPS, являются пылевой низкотемпературной плазмой. Таким образом, привычный для людей мир, в котором важно знать тип химической связи веществ, представляет собой очень маленькую часть окружающей нас Вселенной.

Ковалентная связь — самый распространенный тип химической связи, осуществляемой при взаимодействии с одинаковыми или близкими значениями электроотрицательности.

Ковалентная связь — это связь атомов с помощью общих электронных пар.

После открытия электрона проводилось много попыток разработать электронную теорию химической связи. Наиболее удачными стали работы Льюиса (1916 г.), который предложил рассматривать образование связи как следствие возникновения общих для двух атомов электронных пар. Для этого каждый атом предоставляет одинаковое количество электронов и пытается окружить себя октетом или дублетом электронов, характерным для внешней электронной конфигурации инертных газов. Графически образования ковалентных связей за счет неспаренных электронов по методу Льюиса изображают с помощью точек, обозначающих внешние электроны атома.

Образование ковалентной связи согласно теории Льюиса

Механизм образования ковалентной связи

Основным признаком ковалентной связи является наличие общей электронной пары, принадлежащей обоим химически соединенным атомам, поскольку пребывание двух электронов в поле действия двух ядер энергетически выгоднее, чем нахождение каждого электрона в поле своего ядра. Возникновение общей электронной пары связи может проходить по разным механизмам, чаще — по обменному, а иногда — по донорно-акцепторных.

по принципу обменного механизма образования ковалентной связи каждый из взаимодействующих атомов поставляет на образование связи одинаковое количество электронов с антипараллельными спинами. К примеру:


Общая схема образования ковалентной связи: а) по обменному механизму; б) по донорно-акцепторному механизму

по донорно-акцепторному механизму двухэлектронная связь возникает при взаимодействии различных частиц. Одна из них — донор А: имеет неразделенную пару электронов (то есть такую, что принадлежит только одному атому), а другая — акцептор В — имеет вакантную орбиталь.

Частица, которая предоставляет для связи двухэлектронное (неразделенную пару электронов), называется донором, а частица со свободной орбиталью, которая принимает эту электронную пару, — акцептором.

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и вакантной орбитали другого называется донорно-акцепторным механизмом.

Донорно-акцепторный связь иначе называется семиполярной, поскольку на атоме-доноре возникает частичный эффективный положительный заряд δ+ (за счет того, что его неразделенная пара электронов отклонилась от него), а на атоме-акцепторе — частичный эффективный отрицательный заряд δ- (благодаря тому, что происходит смещение в его сторону неразделенной электронной пары донора).

В качестве примера простого донора электронной пары можно привести ион Н, который имеет неразделенную электронную пару. В результате присоединения негативного гидрид-иона к молекуле, центральный атом которой имеет свободную орбиталь (на схеме обозначена как пустая квантовая ячейка), например ВН 3 , образуется сложный комплексный ион ВН 4 с отрицательным зарядом (Н + ВН 3 ⟶⟶ [ВН 4 ] —) :

Акцептор электронной пары — ион водорода, или просто протон Н + . Его присоединение к молекуле, центральный атом которой имеет неразделенную электронную пару, например к NH 3 , тоже приводит к образованию комплексного иона NH 4 + , но уже с положительным зарядом:

Метод валентных связей

Первая квантово-механическая теория ковалентной связи была создана Гейтлером и Лондоном (в 1927 г.) для описания молекулы водорода, а затем была применена Полингом к многоатомным молекулам. Эта теория называется методом валентных связей , основные положения которого кратко можно изложить так:

  • каждая пара атомов в молекуле содержится вместе с помощью одной или нескольких общих электронных пар, при этом электронные орбитали взаимодействующих атомов перекрываются;
  • прочность связи зависит от степени перекрывания электронных орбиталей;
  • условием образования ковалентной связи является антинаправленность спинов электронов; благодаря этому возникает обобщенная электронная орбиталь с наибольшей электронной плотностью в межъядерном пространстве, которая обеспечивает притяжение положительно заряженных ядер друг к другу и сопровождается уменьшением общей энергии системы.

Гибридизация атомных орбиталей

Несмотря на то, что в образовании ковалентных связей участвуют электроны s-, p- или d-орбиталей, имеющие различные форму и различную ориентацию в пространстве, во многих соединениях эти связи оказываются равноценными. Для объяснения этого явления было введено понятие «гибридизация».

Гибридизация — это процесс смешивания и выравнивания орбиталей по форме и энергии, при котором происходит перераспределение электронных плотностей близких по энергии орбиталей, в результате чего они становятся равноценными.

Основные положения теории гибридизации:

  1. При гибридизации начальная форма и орбиталей взаимно меняются, при этом образуются новые, гибридизованные орбитали, но уже с одинаковой энергией и одинаковой формы, напоминающей неправильную восьмерку.
  2. Число гибридизованных орбиталей равно числу выходных орбиталей, участвующих в гибридизации.
  3. В гибридизации могут участвовать орбитали с близкими по значениям энергиями (s- и p-орбитали внешнего энергетического уровня и d-орбитали внешнего или предварительного уровней).
  4. Гибридизованные орбитали более вытянуты в направлении образования химических связей и поэтому обеспечивают лучшее перекрытие с орбиталями соседнего атома, вследствие этого становится более прочным, чем образованный за счет электронов отдельных негибридных орбиталей.
  5. Благодаря образованию более прочных связей и более симметричном распределения электронной плотности в молекуле получается энергетический выигрыш, который с запасом компенсирует расход энергии, необходимой для процесса гибридизации.
  6. Гибридизованные орбитали должны ориентироваться в пространстве таким образом, чтобы обеспечить взаимное максимальное отдаление друг от друга; в этом случае энергия отталкивания наименьшая.
  7. Тип гибридизации определяется типом и количеством выходных орбиталей и меняет размер валентного угла, а также пространственную конфигурацию молекул.

Форма гибридизованных орбиталей и валентных углы (геометрические углы между осями симметрии орбиталей) в зависимости от типа гибридизации: а) sp-гибридизация; б) sp 2 -гибридизация; в) sp 3 -гибридизация

При образовании молекул (или отдельных фрагментов молекул) чаще всего встречаются такие типы гибридизации:


Общая схема sp-гибридизации

Связи, которые образуются с участием электронов sp-гибридизованнных орбиталей, также размещаются под углом 180 0 , что приводит к линейной форме молекулы. Такой тип гибридизации наблюдается в галогенидах элементов второй группы (Be, Zn, Cd, Hg), атомы которых в валентном состоянии имеют неспаренные s- и р-электроны. Линейная форма характерна и для молекул других элементов (0=C=0,HC≡CH), в которых связи образуются sp-гибридизованными атомами.


Схема sp 2 -гибридизации атомных орбиталей и плоская треугольная форма молекулы, которая обусловлена sp 2 -гибридизацией атомных орбиталей

Этот тип гибридизации наиболее характерен для молекул р-элементов третьей группы, атомы которых в возбужденном состоянии имеют внешнюю электронную структуру ns 1 np 2 , где n — номер периода, в котором находится элемент. Так, в молекулах ВF 3 , BCl 3 , AlF 3 и в других связи образованы за счет sp 2 -гибридизованных орбиталей центрального атома.


Схема sp 3 -гибридизации атомных орбиталей

Размещение гибридизованных орбиталей центрального атома под углом 109 0 28` вызывает тетраэдрическую форму молекул. Это очень характерно для насыщенных соединений четырехвалентного углерода СН 4 , СCl 4 , C 2 H 6 и других алканов. Примерами соединений других элементов с тетраэдрической строением вследствие sp 3 -гибридизации валентных орбиталей центрального атома является ионы: BН 4 — , BF 4 — , PO 4 3- , SO 4 2- , FeCl 4 — .


Общая схема sp 3d -гибридизации

Этот тип гибридизации чаще всего встречается в галогенидах неметаллов. В качестве примера можно привести строение хлорида фосфора PCl 5 , при образовании которого атом фосфора (P … 3s 2 3p 3) сначала переходит в возбужденное состояние (P … 3s 1 3p 3 3d 1), а затем подвергается s 1 p 3 d- гибридизации — пять одноэлектронных орбиталей становятся равноценными и ориентируются вытянутыми концами к углам мысленной тригональной бипирамиды. Это и определяет форму молекулы PCl 5 , которая образуется при перекрытии пяти s 1 p 3 d- гибридизованных орбиталей с 3р-орбиталями пяти атомов хлора.

  1. sp — Гибридизация. При комбинации одной s- i одной р-орбиталей возникают две sp-гибридизованные орбитали, расположенные симметрично под углом 180 0 .
  2. sp 2 — Гибридизация. Комбинация одной s- и двух р-орбиталей приводит к образованию sp 2 -гибридизованных связей, расположенных под углом 120 0 , поэтому молекула приобретает форму правильного треугольника.
  3. sp 3 — Гибридизация. Комбинация четырех орбиталей — одной s- и трех р приводит к sp 3 — гибридизации, при которой четыре гибридизованные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, то есть под углом 109 0 28 `.
  4. sp 3 d — Гибридизация. Комбинация одной s-, трех р- и одной d- орбиталей дает sp 3 d- гибридизацию, что определяет пространственную ориентацию пяти sp 3 d-гибридизованных орбиталей к вершинам тригональной бипирамиды.
  5. Другие типы гибридизации. В случае sp 3 d 2 -гибридизации шесть sp 3 d 2 -гибридизованных орбиталей направлены к вершинам октаэдра. Ориентация семи орбиталей к вершинам пентагональной бипирамиды соответствует sp 3 d 3 -гибридизации (или иногда sp 3 d 2 f) валентных орбиталей центрального атома молекулы или комплекса.

Метод гибридизации атомных орбиталей объясняет геометрическую структуру большого количества молекул, однако согласно опытным данным чаще наблюдаются молекулы с несколько другими значениями валентных углов. Например, в молекулах СН 4 , NH 3 и Н 2 О центральные атомы находятся в sp 3 -гибридизованном состоянии, поэтому можно было бы ожидать, что валентные углы в них равны тетраэдрическим (~ 109,5 0). Экспериментально установлено, что валентный угол в молекуле СН 4 на самом деле составляет 109,5 0 . Однако в молекулах NH 3 и Н 2 O значение валентного угла отклоняется от тетраэдрического: он равен 107,3 0 в молекуле NH 3 и 104,5 0 в молекуле Н 2 О. Такие отклонения объясняется наличием неразделенной электронной пары у атомов азота и кислорода. Двухэлектронная орбиталь, которая содержит неразделенную пару электронов, благодаря повышенной плотности отталкивает одноэлектронные валентные орбитали, что приводит к уменьшению валентного угла. У атома азота в молекуле NH 3 из четырех sp 3 -гибридизованных орбиталей три одноэлектронные орбитали образуют связи с тремя атомами Н, а на четвертой орбитали содержится неразделенная пара электронов.

Несвязанная электронная пара, которая занимает одну из sp 3 -гибридизованных орбиталей, направленных к вершинам тетраэдра, отталкивая одноэлектронные орбитали, вызывает асимметричное распределение электронной плотности, окружающей атом азота, и как следствие сжимает валентный угол до 107,3 0 . Аналогичная картина уменьшения валентного угла от 109,5 0 до 107 0 в результате воздействия неразделенной электронной пары атома N наблюдается и в молекуле NCl 3 .


Отклонение валентного угла от тетраэдрического (109,5 0) в молекуле: а) NН3 ; б) NCl3

У атома кислорода в молекуле Н 2 О на четыре sp 3 -гибридизованные орбитали приходится по две одноэлектронные и две двухэлектронные орбитали. Одноэлектронные гибридизованные орбитали участвуют в образовании двух связей с двумя атомами Н, а две двухэлектронные пары остаются неразделенными, то есть принадлежащими только атому H. Это увеличивает асимметричность распределения электронной плотности вокруг атома О и уменьшает валентный угол по сравнению с тетраэдрическим до 104.5 0 .

Следовательно, число несвязанных электронных пар центрального атома и их размещения на гибридизованных орбиталях влияет на геометрическую конфигурацию молекул.

Характеристики ковалентной связи

Ковалентная связь имеет набор определенных свойств, которые определяют ее специфические особенности, или характеристики. К ним, кроме уже рассмотренных характеристик «энергия связи» и «длина связи», относятся: валентный угол, насыщенность, направленность, полярность и тому подобное.

1. Валентный угол — это угол между соседними осями связей (то есть условными линиями, проведенными через ядра химически соединенных атомов в молекуле). Величина валентного угла зависит от природы орбиталей, типа гибридизации центрального атома, влияния неразделенных электронных пар, которые не участвуют в образовании связей.

2. Насыщенность . Атомы имеют возможности для образования ковалентных связей, которые могут формироваться, во-первых, по обменному механизму за счет неспаренных электронов невозбуждённого атома и за счет тех неспаренных электронов, которые возникают в результате его возбуждения, а во-вторых, по донорно акцепторному механизму. Однако общее количество связей, которые может образовывать атом, ограничено.

Насыщенность — это способность атома элемента образовывать с другими атомами определенное, ограниченное количество ковалентных связей.

Так, второго периода, которые имеют на внешнем энергетическом уровне четыре орбитали (одну s- и три р-), образуют связи, число которых не превышает четырех. Атомы элементов других периодов с большим числом орбиталей на внешнем уровне могут формировать больше связей.

3. Направленность . В соответствии с методом, химическая связь между атомами обусловлена перекрытием орбиталей, которые, за исключением s-орбиталей, имеют определенную ориентацию в пространстве, что и приводит к направленности ковалентной связи.

Направленность ковалентной связи — это такое размещение электронной плотности между атомами, которое определяется пространственной ориентацией валентных орбиталей и обеспечивает их максимальное перекрытие.

Поскольку электронные орбитали имеют различные формы и различную ориентацию в пространстве, то их взаимное перекрытие может реализоваться различными способами. В зависимости от этого различают σ-, π- и δ- связи.

Сигма-связь (σ-связь) — это такое перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется вдоль воображаемой линии, соединяющей два ядра.

Сигма-связь может образовываться за счет двух s-электронов, одного s- и одного р электрона, двух р-электронов или двух d-электронов. Такая σ-связь характеризуется наличием одной области перекрытия электронных орбиталей, она всегда одинарная, то есть образуется только одной электронной парой.

Разнообразие форм пространственной ориентации «чистых» орбиталей и гибридизованных орбиталей не всегда допускают возможность перекрывания орбиталей на оси связи. Перекрывания валентных орбиталей может происходить по обе стороны от оси связи — так называемое «боковое» перекрывания, которое чаще всего осуществляется при образовании π-связей.

Пи-связь (π-связь) — это перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется по обе стороны от линии, соединяющей ядра атомов (т.е. от оси связи).

Пи-связь может образоваться при взаимодействии двух параллельных р-орбиталей, двух d-орбиталей или других комбинаций орбиталей, оси которых не совпадают с осью связи.


Схемы образования π-связей между условными А и В атомами при боковом перекрытии электронных орбиталей

4. Кратность. Эта характеристика определяется числом общих электронных пар, связывающих атомы. Ковалентная связь по кратности может быть одинарной (простой), двойной и тройной. Связь между двумя атомами с помощью одной общей электронной пары называется одинарной связью (простой), двух электронных пар — двойной связью, трех электронных пар — тройной связью. Так, в молекуле водорода Н 2 атомы соединены одинарной связью (Н-Н), в молекуле кислорода О 2 — двойным (В = О), в молекуле азота N 2 — тройным (N≡N). Особое значение кратность связей приобретает в органических соединениях — углеводородах и их производных: в этане С 2 Н 6 между атомами С осуществляется одинарная связь (С-С), в этилене С 2 Н 4 — двойная (С = С) в ацетилене С 2 Н 2 — тройная (C ≡ C)(C≡C).

Кратность связи влияет на энергию: с повышением кратности растет ее прочность. Повышение кратности приводит к уменьшению межъядерного расстояния (длины связи) и увеличению энергии связи.


Кратность связи между атомами углерода: а) одинарная σ-связь в этане Н3С-СН3 ; б) двойная σ+π-связь в этилене Н2С = СН2 ; в) тройная σ+π+π-связь в ацетилене HC≡CH

5. Полярность и поляризуемость . Электронная плотность ковалентной связи может по-разному располагаться в межъядерном пространстве.

Полярность — это свойство ковалентной связи, которое определяется областью расположения электронной плотности в межъядерном пространстве относительно соединенных атомов.

В зависимости от размещения электронной плотности в межъядерном пространстве различают полярная и неполярная ковалентные связи. Неполярной связью называется такая связь, при которой общее электронное облако размещается симметрично относительно ядер соединенных атомов и одинаково принадлежит обоим атомам.

Молекулы с таким типом связи называются неполярными или гомоядерными (то есть такими, в состав которых входят атомы одного элемента). Неполярная связь проявляется как правило в гомоядерных молекулах (Н 2 , Cl 2 , N 2 и т.д.) или — реже — в соединениях, образованных атомами элементов с близкими значениями электроотрицательности, например, карборунд SiC. Полярной, (или гетерополярной) называется связь, при которой общее электронное облако несимметричное и смещено к одному из атомов.

Молекулы с полярной связью называются полярными, или гетероядерными. В молекулах с полярной связью обобщенная электронная пара смещается в сторону атома с большей электроотрицательностью. В результате на этом атоме возникает некоторый частичный отрицательный заряд (δ-), который называется эффективным, а у атома с меньшей электроотрицательностью — одинаковый по величине, но противоположный по знаку частичный положительный заряд (δ+). Например, экспериментально установлено, что эффективный заряд на атоме водорода в молекуле хлорида водорода HCl — δH=+0,17, а на атоме хлора δCl=-0,17 абсолютного заряда электрона.

Чтобы определить, в какую сторону будет смещаться электронная плотность полярной ковалентной связи, необходимо сравнить электроны обоих атомов. По возрастанию электроотрицательности наиболее распространенные химические элементы размещаются в такой последовательности:

Полярные молекулы называются диполями — системами, в которых центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают.

Диполь — это система, которая представляет собой совокупность двух точечных электрических зарядов, одинаковых по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга.

Расстояние между центрами притяжения называются длина диполя и обозначаются буквой l. Полярность молекулы (или связи) количественно характеризуется дипольным моментом μ, который в случае двухатомной молекулы равен произведению длины диполя на величину заряда электрона: μ=el.

В единицах СИ дипольный момент измеряется в [Кл × м] (Кулон-метры), но чаще пользуются внесистемной единицей [D] (дебай): 1D = 3,33 · 10 -30 Кл × м. Значение дипольных моментов ковалентных молекул меняется в пределах 0-4 D, а ионных — 4-11D. Чем больше длина диполя, тем более полярной является молекула.

Совместная электронное облако в молекуле может смещаться под действием внешнего электрического поля, в том числе и поля другой молекулы или иона.

Поляризуемость — это изменение полярности связи в результате смещения электронов, образующих связь, под действием внешнего электрического поля, в том числе и силового поля другой частицы.

Поляризуемость молекулы зависит от подвижности электронов, которая является тем сильнее, чем больше расстояние от ядер. Кроме того, поляризуемость зависит от направленности электрического поля и от способности электронных облаков деформироваться. Под действием внешнего поля неполярные молекулы становятся полярными, а полярные — еще более полярными, то есть в молекулах индуцируется диполь, который называется приведенным, или индуцированным диполем.


Схема образования индуцированного (приведенного) диполя из неполярной молекулы под действием силового поля полярной частицы — диполя

В отличие от постоянных, индуцированные диполи возникают лишь при действии внешнего электрического поля. Поляризация может вызывать не только поляризуемость связи, но и ее разрыв, при котором происходит переход связующего электронной пары к одному из атомов и образуются отрицательно и положительно заряженные ионы.

Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Свойства соединений с ковалентной связью

Вещества с ковалентными связями делятся на две неравные группы: молекулярные и атомные (или немолекулярные), которых значительно меньше, чем молекулярных.

Молекулярные соединения в обычных условиях могут находиться в различных агрегатных состояниях: в виде газов (CO 2 , NH 3 , CH 4 , Cl 2 , O 2 , NH 3), легколетучих жидкостей (Br 2 , H 2 O, C 2 H 5 OH) или твердых кристаллических веществ, большинство из которых даже при очень незначительном нагревании способны быстро плавиться и легко сублимироваться (S 8 , P 4 , I 2 , сахар С 12 Н 22 О 11 , «сухой лед» СО 2).

Низкие температуры плавления, возгонки и кипения молекулярных веществ объясняются очень слабыми силами межмолекулярного взаимодействия в кристаллах. Именно поэтому для молекулярных кристаллов не присуща большая прочность, твердость и электрическая проводимость (лед или сахар). При этом вещества с полярными молекулами имеют более высокие температуры плавления и кипения, чем с неполярными. Некоторые из них растворимы в или других полярных растворителях. А вещества с неполярными молекулами, наоборот, лучше растворяются в неполярных растворителях (бензол, тетрахлорметан). Так, йод, у которого молекулы неполярные, не растворяется в полярной воде, но растворяется в неполярной CCl 4 и малополярном спирте.

Немолекулярные (атомные) вещества с ковалентными связями (алмаз, графит, кремний Si, кварц SiO 2 , карборунд SiC и другие) образуют чрезвычайно прочные кристаллы, за исключением графита, которого имеет слоистую структуру. Например, кристаллическая решетка алмаза — правильный трехмерный каркас, в котором каждый sр 3 -гибридизованный атом углерода соединен с четырьмя соседними атомами С σ-связями. По сути весь кристалл алмаза — это одна огромная и очень прочная молекула. Аналогичное строение имеют и кристаллы кремния Si, который широко применяется в радиоэлектронике и электронной технике. Если заменить половину атомов С в алмазе атомами Si, не нарушая каркасную структуру кристалла, то получим кристалл карборунда — карбида кремния SiC — очень твердого вещества, используемого в качестве абразивного материала. А если в кристаллической решетке кремния между каждыми двумя атомами Si вставить по атому О, то образуется кристаллическая структура кварца SiO 2 — тоже очень твердого вещества, разновидность которого также используют как абразивный материал.

Кристаллы алмаза, кремния, кварца и подобные им по структуре — это атомные кристаллы, они представляют собой огромные «супермолекулы», поэтому их структурные формулы можно изобразить не полностью, а только в виде отдельного фрагмента, например:


Кристаллы алмаза, кремния, кварца

Немолекулярные (атомные) кристаллы, состоящие из соединенных между собой химическими связями атомов одного или двух элементов, относятся к тугоплавким веществам. Высокие температуры плавления обусловлены необходимостью затраты большого количества энергии для разрыва прочных химических связей при плавлении атомных кристаллов, а не слабого межмолекулярного взаимодействия, как в случае молекулярных веществ. По этой же причине многие атомные кристаллов при нагревании не плавятся, а разлагаются или сразу переходят в парообразное состояние (возгонка), например, графит сублимируется при 3700 o С.

Немолекулярные вещества с ковалентными связями нерастворимые в воде и других растворителях, большинство из них не проводит электрический ток (кроме графита, которому присуща электропроводность, и полупроводников — кремния, германия и др.).

Ни для кого не секрет, что химия - наука довольно сложная и к тому же разнообразная. Множество различных реакций, реагентов, химикатов и прочих сложных и непонятных терминов - все они взаимодействуют друг с другом. Но главное, что с химией мы имеем дело каждый день, неважно, слушаем ли мы учителя на уроке и усваиваем новый материал или же завариваем чай, который в целом тоже представляет собой химический процесс.

Вконтакте

Одноклассники

Можно сделать вывод, что химию знать просто необходимо , разбираться в ней и знать, как устроен наш мир или какие-то отдельные его части - интересно, и, более того, полезно.

Сейчас нам предстоит разобраться с таким термином, как ковалентная связь, которая, кстати говоря, может быть как полярной, так и неполярной. Кстати говоря, само слово «ковалентная», образуется от латинского «co» - совместно и «vales» - имеющий силу.

Появления термина

Начнём с того, что сам термин «ковалентная» впервые ввёл в 1919 году Ирвинг Ленгмюр - лауреат Нобелевской премии. Понятие «ковалентной» предполагает химическую связь, при которой оба атома обладают электронами, что называется совместным обладанием. Таким образом, она, к примеру, отличается от металлической, в которой электроны свободны, или же от ионной, где и вовсе один отдаёт электроны другому. Нужно заметить, что образуется она между неметаллами.

Исходя из вышесказанного, можно сделать небольшой вывод о том, что из себя представляет этот процесс. Она возникает между атомами за счёт образования общих электронных пар, причём пары эти возникают на внешних и предвнешних подуровнях электронов.

Примеры, вещества с полярной:

Виды ковалентной связи

Также различаются два вида - это полярная, и, соответственно, неполярная связи. Особенности каждой из них мы разберём отдельно.

Ковалентная полярная - образование

Что из себя представляет термин «полярная»?

Обычно происходит так, что два атома имеют разную электроотрицательность, следовательно, общие электроны не принадлежат им в равной степени, а находятся они всегда ближе к одному, чем к другому. К примеру, молекула хлороводорода, в ней электроны ковалентной связи располагаются ближе к атому хлора, так как его электроотрицательность выше чем у водорода. Однако, на самом деле, разница в притяжении электронов невелика настолько, чтобы произошёл полный перенос электрона от водорода к хлору.

В итоге при полярной электронная плотность смещается к более электроотрицательному, на нём же возникает частичный отрицательный заряд. В свою очередь, у того ядра, чья электроотрицательность ниже, возникает, соответственно, частичный положительный заряд.

Делаем вывод: полярная возникает между различными неметаллами, которые отличаются по значению электроотрицательности, а электроны располагаются ближе к ядру с большей электроотрицательностью.

Электроотрицательность — способность одних атомов притягивать к себе электроны других, тем самым образуя химическую реакцию.

Примеры ковалентной полярной , вещества с ковалентной полярной связью:

Формула вещества с ковалентной полярной связью

Ковалентная неполярная, разница между полярной и неполярной

И наконец, неполярная, скоро мы узнаем что же она из себя представляет.

Основное отличие неполярной от полярной - это симметрия. Если в случае с полярной электроны располагались ближе к одному атому, то при неполярной связи, электроны располагаются симметрично, то есть в равной степени по отношению к обоим.

Примечательно, что неполярная возникает между атомами неметалла одного химического элемента.

К примеру, вещества с неполярной ковалентной связью:

Также совокупность электронов зачастую называют просто электронным облаком, исходя из этого делаем вывод, что электронное облако связи, которое образует общая пара электронов, распределяется в пространстве симметрично, или же равномерно по отношению к ядрам обоих.

Примеры ковалентной неполярной связи и схема образования ковалентной неполярной связи

Но Также полезно знать, как же различать ковалентную полярную и неполярную.

Ковалентная неполярная - это всегда атомы одного и того же вещества. H2. CL2.

На этом статья подошла к концу, теперь мы знаем, что из себя представляет этот химический процесс, умеем определять его и его разновидности, знаем формулы образования веществ, и в целом чуточку больше о нашем сложном мире, успехов в химии и образовании новых формул.

Химической связью называют взаимодействие частиц (ионов или атомов), которое осуществляется в процессе обмена электронами, находящимися на последнем электронном уровне. Существует несколько видов такой связи: ковалентная (она делится на неполярную и полярную) и ионная. В этой статье мы подробнее остановимся именно на первом виде химических связей - ковалентных. А если быть точнее, то на полярном ее виде.

Ковалентная полярная связь - это химическая связь между валентными электронными облаками соседних атомов. Приставка «ко-» - означает в данном случае «совместно», а основа «валента» переводится как сила или способность. Те два электрона, которые связываются между собой, называют электронной парой.

История

Впервые этот термин употребил в научном контексте лауреат Нобелевской премии химик Ирвинг Леннгрюм. Произошло это в 1919 году. В своей работе ученый объяснял, что связь, в которой наблюдаются общие для двух атомов электроны, отличается от металлической или ионной. А значит, требует отдельного названия.

Позже, уже в 1927 году, Ф. Лондон и В. Гайтлер, взяв в качестве примера молекулу водорода как химически и физически наиболее простую модель, описали ковалентную связь. Они взялись за дело с другого конца, и свои наблюдения обосновывали, используя квантовую механику.

Суть реакции

Процесс преобразования атомарного водорода в молекулярный является типичной химической реакцией, качественным признаком которой служит большое выделение теплоты при объединении двух электронов. Выглядит это примерно так: два атома гелия приближаются друг к другу, имея по одному электрону на своей орбите. Затем эти два облака сближаются и образуют новое, похожее на оболочку гелия, в котором вращаются уже два электрона.

Завершенные электронные оболочки устойчивее, чем незавершенные, поэтому их энергия существенно ниже, чем у двух отдельных атомов. При образовании молекулы излишек тепла рассеивается в окружающей среде.

Классификация

В химии выделяют два вида ковалентной связи:

  1. Ковалентная неполярная связь, образующаяся между двумя атомами одного неметаллического элемента, например кислород, водород, азот, углерод.
  2. Ковалентная полярная связь, возникает между атомами разных неметаллов. Хорошим примером может служить молекула хлороводорода. Когда атомы двух элементов соединяются друг с другом, то неспаренный электрон от водорода частично переходит на последний электронный уровень атома хлора. Таким образом, на атоме водорода образуется положительный заряд, а на атоме хлора - отрицательный.

Донорно-акцепторная связь также является видом ковалентной связи. Она заключается в том, что один атом из пары предоставляет оба электрона, становясь донором, а принимающий их атом, соответственно, считается акцептором. При образовании связи между атомами, заряд донора увеличивает на единицу, а заряд акцептора снижается.

Семиполярная связь - е е можно считать подвидом донорно-акцепторной. Только в этом случае объединяются атомы, один из которых имеет законченную электронную орбиталь (галогены, фосфор, азот), а второй - два неспаренных электрона (кислород). Образование связи проходит в два этапа:

  • сначала от неподеленной пары отрывает один электрон и присоединяется к неспаренным;
  • объединение оставшихся неспаренных электродов, то есть формируется ковалентная полярная связь.

Свойства

Полярная ковалентная связь имеет свои физико-химические свойства, такие как направленность, насыщаемость, полярность, поляризуемость. Именно они определяют характеристики образующихся молекул.

Направленность связи зависит от будущего молекулярного строения образующегося вещества, а именно от геометрической формы, которую формируют два атома при присоединении.

Насыщаемость показывает, сколько ковалентных связей способен образовать один атом вещества. Это число ограничено количеством внешних атомных орбиталей.

Полярность молекулы возникает потому, что электронное облако, образующееся из двух разных электронов, неравномерно по всей своей окружности. Это возникает из-за разницы отрицательного заряда в каждом из них. Именно это свойство и определяет, полярная связь или неполярная. Когда объединяются два атома одного элемента, электронное облако симметрично, значит, связь ковалентная неполярная. А если объединяются атомы разных элементов, то формируется асимметричное электронное облако, так называемый дипольный момент молекулы.

Поляризуемость отражает то, насколько активно электроны в молекуле смещаются под действием внешних физических или химических агентов, например электрического или магнитного поля, других частиц.

Два последних свойства образующейся молекулы определяют ее способность реагировать с другими полярными реагентами.

Сигма-связь и пи-связь

Формирование этих связей зависит от плотности распределения электронов в электронном облаке в процессе формирования молекулы.

Для сигма-связи характерно наличие плотного скопления электронов вдоль оси, соединяющей ядра атомов, то есть в горизонтальной плоскости.

Пи-связь характеризуется уплотнение электронных облаков в месте их пересечения, то есть над и под ядром атома.

Визуализация связи в записи формулы

Для примера можем взять атом хлора. На ее внешнем электронном уровне содержится семь электронов. В формуле их располагают тремя парами и одним неспаренным электроном вокруг обозначения элемента в виде точек.

Если таким же образом записывать молекулу хлора, то будет видно, что два неспаренных электрона образовали пару, общую для двух атомов, она называется поделенной. При этом каждый из них получил по восемь электронов.

Правило октета-дублета

Химик Льюис, который предположил, как образуется ковалентная полярная связь, первым из своих коллег сформулировал правило, объясняющее устойчивость атомов при их объединении в молекулы. Суть его заключается в том, что химические связи между атомами образуются в том случае, когда обобществляется достаточное количество электронов, чтобы получилась электронная конфигурация, повторяющая подобная атомам благородных элементов.

То есть при образовании молекул для их стабилизации необходимо, чтобы все атомы имели законченный внешний электронный уровень. Например, атомы водорода, объединяясь в молекулу, повторяют электронную оболочку гелия, атомы хлора, приобретают схожесть на электронном уровне с атомом аргона.

Длина связи

Ковалентная полярная связь, кроме всего прочего, характеризуется определенным расстоянием между ядрами атомов, образующих молекулу. Они находятся на таком расстоянии друг от друга, при котором энергия молекулы минимальна. Для того чтобы этого достичь, необходимо, чтобы электронные облака атомов максимально перекрывали друг друга. Существует прямо пропорциональная закономерность между размером атомов и длинной связи. Чем больше атом, тем длиннее связь между ядрами.

Возможен вариант, когда атом образует не одну, а несколько ковалентных полярных связей. Тогда между ядрами формируются так называемые валентные углы. Они могут быть от девяноста до ста восьмидесяти градусов. Они и определяют геометрическую формулу молекулы.