Рефераты Изложения История

Не имеют кристаллической структуры. Строение кристаллов

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура – это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии – точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии – это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 3.2. приведена классификация кристаллов по сингонии.

Таблица 3.2. Классификация кристаллов по сингонии

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм , т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией . Известны полиморфные модификации углерода (алмаз, графит), кварца (α-кварц, β-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы – изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al 2 O 3 . 2SiO 2 . 2H 2 O, пирофиллита Al 2 O 3 . 4SiO 2 . 2H 2 O и монтмориллонита Al 2 O 3 . 4SiO 2 . 3H 2 O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.

Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны . Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь – быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел – силикатные стекла, битумы, смолы и пр.

Второй путь – диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды – это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Лекция 10

Структура твердых тел. Принципы описания кристаллических структур

Большая часть окружающих нас веществ находится в твердом состоянии. Некоторые твердые тела обладают блеском и поддаются деформации в холодном состоянии ‑ их относят к металлам. Другие представляют собой кристаллы с правильными кристаллическими гранями и четкими плоскостями скалывания, некоторые из них относят к солям, или ионным кристаллам, а некоторые ‑ к ковалентным кристаллам. Ряд других твердых тел мягки и сохраняют многие свойства молекул газа, из которого они сконденсировались, ‑ это молекулярные кристаллы.

Наблюдаемая кристаллическая структура твердых тел (расположение атомов в элементарной ячейке) определяется положением минимума энергии системы как функции координат центров атомов. В общем случае эта минимизация требует проведения квантовохимических расчетов для набора возможных положений атомов и, таким образом, является довольно сложной математической процедурой. Однако в ряде случаев (при ненаправленных ненасыщаемых силах межатомных взаимодействий ‑ в чисто ионных, ван-дер-ваальсовых или металлических кристаллах) описание структуры кристаллов может быть существенно упрощено, если рассматривать атомы как жесткие шары с определенными (характерными для данного атома в данном зарядовом состоянии при данном типе межатомного взаимодействия) радиусами. Такой подход при своей очевидной приближенности, как было показано ранее, для кристаллов с ионной и ван-дер-ваальсовой связями может быть оправдан резким возрастанием энергии взаимного отталкивания при сближении атомов до состояния заметного перекрывания электронных оболочек и малостью этой энергии на больших межатомных расстояниях.


Твердые тела в отличие от жидких и газообразных характеризуются сопротивлением сдвиговым деформациям, что позволяет веществу сохранять форму под действием внешних сил. Указанная особенность тесно связана с дальнодействующей природой межатомного взаимодействия, приводящего к упорядоченному расположению частиц (атомов, молекул или ионов), из которых составлено твердое тело. Максимальная степень порядка - дальний порядок, т. е. строго периодическое повторение правильного расположения частиц в любой точке твердого тела, реализуется в кристаллах, тогда как аморфным твердым телам присущ лишь ближ ний порядок ‑ закономерное расположение частиц на расстояниях, не превышающих нескольких межатомных. Как следствие, переход аморфных твердых тел в жидкое состояние в отличие от кристаллов совершается непрерывно, и в этом смысле аморфные тела (например, стекла) иногда рассматривают как переохлажденные жидкости.

Рассмотрим три класса веществ: молекулярные кристаллы, ковалентные кристаллы и металлы.

На рисунке 1 показано, к какому из этих классов относятся кристаллы элементов периодической системы. Имеется лишь 15 элементов, которые, несомненно, дают молекулярные кристаллы (в верхней правой части таблицы), и около 70 элементов металлов (слева в таблице). Между металлами и молекулярными кристаллами находятся элементы, которые включают ковалентные кристаллы, а также некоторые твердые тела, которые трудно отнести к определенному классу. Некоторые элементы (например, мышьяк и сурьма) имеют как молекулярные, так и металлические формы. Фосфор также дает и ковалентные и молекулярные кристаллы. Эти пограничные элементы особенно важны благодаря своему промежуточному характеру, и мы уделим им особое внимание.

Соединения двух различных неметаллов всегда образуют молекулярные или ковалентные кристаллы. Соединение металла и неметалла обычно образует ионный или ковалентный кристалл. Два металла могут образовывать одно и более металлических соединений или (что бывает чаще) целый ряд металлических растворов, где один элемент растворен в другом.

Закономерности строения неметаллических кристаллов описывает правило (8- N ) Юм-Розери, согласно которому координационное число атома (количество связей, которыми атом связан с ближайшими атомами) КЧ= 8 ‑ N , где N ‑ номер группы в короткопериодном варианте таблицы Менделеева.

Поскольку в основе правила лежат представления об устойчивости электронного октета и электронной паре, осуществляющей единичную ковалентную связь, то правило справедливо лишь для элементов главных подгрупп начиная с IV группы.

Например, в кристаллах элементов 6-й группы (S, Se) КЧ =8 - 6=2; таким образом, в структуре будут присутствовать или кольцевые молекулы (S8 в ромбической и моноклинной сере), или длинные полимерные цепи (S¥ в пластической сере и в селене). Атомы в кольцах и цепях связаны между собой ковалентными связями, а между цепями и кольцами действуют ван-дер-ваальсовы силы.

Для кристаллов элементов VII группы КЧ=8-7=1, что приводит к кристаллу, состоящему из двухатомных молекул, например I2. Атомы в молекуле связаны ковалентной связью, а молекулы объединены в кристалл ван-дер-ваальсовыми силами.


Однако далеко не все элементарные кристаллы имеют молекулярный тип связи. Видно, что только в случае элементов IV главной подгруппы (более точно у С, Si, Ge) могут образовываться кристаллы с исключительно ковалентной связью, поскольку координационного числа 4, которое выводится из правила 8 ‑ N , достаточно, чтобы связать все атомы кристалла трехмерной сеткой ковалентных связей. Главная особенность таких элементарных кристаллов ‑ склонность к полиморфизму и, как следствие, многообразие проявляемых ими свойств (рисунок 2). Стабильные модификации указанных элементов - ковалентные кристаллы с высокими значениями механических характеристик (модуля Юнга, модуля сдвига, прочности, твердости), а также высокими температурами плавления и кипения. Типичный пример: кремний, в кристаллической решетке которого (ее еще называют алмазной решеткой) каждый атом, находящийся в состоянии sp3-гибридизации, окружен тетраэдром из соседних атомов кремния. Подобная жесткая трехмерная сетка тетраэдрических связей обеспечивает высокую устойчивость кристаллической решетке. Кристаллический кремний имеет высокую температуру плавления (1420 °С) и кипения (ЗЗ00 °С), исключительную прочность и химическую стойкость (нерастворим в воде и растворах кислот).

Мы уже сказали, что большинство простых и сложных веществ в обычных условиях представляют собой твердые тела. Одной из важнейших задач химии твердого тела является установление взаимосвязи структуры твердых тел с их свойствами.

Напомню, что кристаллическая структура – это конкретное расположение атомов в кристалле. Это расположение усреднено по времени и пространству и отвечает среднестатистическим максимумам электронной или ядерной плотности кристалла.

Идеализированная математическая форма расположения атомов в кристалле, описанная набором атомных позиций в рамках кристаллической решетки и одной из 230 пространственных групп симметрии, соответствует идеальной структуре. Различают полностью упорядоченные структуры, в которых каждая атомная позиция нацело заселена атомами одного сорта, и разупорядоченные структуры, где присутствуют атомные позиции, не полностью заселенные односортными атомами. Разные аспекты кристаллической структуры рассматривают в рамках различных моделей структуры. Локальные особенности микроструктуры кристалла отвечают реальной структуре. Экспериментально кристаллическую структуру определяют методами структурного анализа.

Кристаллическая структура (внутреннее строение) обуславливает многогранную форму кристалла (внешнее строение).

Кристалл – твердое тело, отличающееся присутствием как ближнего, так и дальнего порядка. Это равновесная форма твердого состояния вещества.

Для всех без исключения кристаллов характерно решетчатое строение. Чтобы представить себе такую решетку, мысленно заполни пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет кладка из кирпичиков, вплотную приложенных друг к другу. Если внутри каждого параллелепипеда выделить соответственные точки (например, их центры тяжести или вершины), мы получим модель пространственной решетки. В конкретных кристаллических структурах места узлов пространственной решетки могут заполнять отдельные атомы или ионы, или же группы атомов – молекулы. Прямые линии, по которым расположены частицы в решетке, называются рядами, а плоскости, усаженные частицами, называются плоскими сетками . Плоские сетки, ряды, вершины соответствуют граням, ребрам кристалла.

Кристаллическая решетка – это трехмернопространственное расположение материальных частиц (атомов, ионов, молекул), слагающих кристалл.

Условно эквивалентность координатных направлений можно показать в виде единичных векторов – масштабов а, в, с – по соответствующим координатным осям X, Y, Z.

Три возможности соотношения единичных векторов – а = в = с, а = в ≠ с, а ¹ в ¹ с – позволяют разделить кристаллографические координатные системы на три группы – три категории кристаллов :

· кристаллы высшей категории (а = в = с) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в группах симметрии таких кристаллов нескольких осей высшего порядка;

· кристаллы средней категории (а = в ≠ с) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах лишь одной оси высшего порядка;

· кристаллы низшей категории (а ≠ в ≠ с) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка.

Рассмотрев угловые соотношения в каждой из перечисленных категорий, можно вывести все кристаллографические координатные системы (сингонии).

Классы симметрии с единым координатным репером объединяются в семейство, называемое сингонией, или системой.

Всего существует 32 различные кристаллографические точечные группы, в которые входят разные комбинации закрытых операций симметрии. Эти точечные группы классифицированы по их принадлежности к кристаллографическим системам.

Кристаллографическая

Соотношения между ребрами элементарной ячейки

Точечные группы

Триклинная

а ≠ в ≠ с

a ≠ b ≠ g ≠ 90°

Моноклинная

а ≠ в ≠ с

a = b = 90° ≠ g

2, (только в одном направлении вдоль оси Z). m

Ортогональная (орторомбическая)

а ≠ в ≠ с

a = b = g = 90°

Тетрагональная

a = b = g = 90°

4, , 4/m, 422, 4mm, 2m, 4/mmm (ось 4-го порядка проходит только вдоль оси Z)

Тригональная и гексагональная

6, , 6/m, 622, 6mm, m2, 6/mmm (ось 3-го (6-го) порядка проходит только вдоль оси Z)

Кубическая

a = b = g = 90°

23, m3, 432, 4m, m3m (4 оси 3-го порядка проходят по объемным диагоналям элементарной ячейки)

Система эквивалентных позиций – это совокупность точек, которые переводятся друг в друга элементами симметрии данной точечной группы.

Число точек, входящих в данную СЭП, называется кратностью системы или кратностью позиций. Или – кратность – это число точек, получаемых размножением их элементами симметрии.

Позиция называется частной , если точка расположена на каком-либо элементе симметрии: на оси, на плоскости симметрии, в особой точке инверсии, в центре симметрии.

Позиция называется общей , если точка не находится на элементе симметрии.

Атомы в кристалле могут быть связаны не только закрытыми элементами симметрии, но и открытыми элементами симметрии.

Совокупность трех некомпланарных векторов называют трансляционной группой или решеткой кристалла.

Векторы а, b , с называют векторами переноса или трансляциями, а их модули – периодами идентичности решетки.

Параллелепипед, построенный на векторах а, b , с, называют параллелепипедом повторяемости решетки.

Составляющими элементами решетки являются ее узлы, узловые ряды и узловые сетки.

Пространственная решетка – это геометрический образ, отражающий трехмерную периодичность распределения атомов в структуре кристалла.

Решетка задается по какому-нибудь одному сорту атомов.

Чтобы задать решетку, нужно выбрать параллелепипед, который бы наиболее полно отражал все особенности данной решетки, являясь ее минимальным звеном, т. е. нужно выбрать элементарную ячейку.

Элементарная ячейка – параллелепипед повторяемости, построенный на кратчайших трансляциях вдоль кристаллографических систем координат.

Три возможных соотношения векторов – a = b = c , a = b ¹ c , a ¹ b ¹ c – позволяют разделить кристаллографические координатные системы, а следовательно, и 32 класса симметрии на три категории кристаллов:

1. кристаллы низшей категории (a ¹ b ¹ c ) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка. Из условия неэквивалентности координатных направлений следует, что к низшей категории относятся только классы, не имеющий осей высшего порядка..gif" width="13" height="20 src=">) или полное отсутствие элементов симметрии (1).

2. кристаллы средней категории (a = b ¹ c ) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах симметрии лишь одной оси высшего порядка. Из условия эквивалентности двух горизонтальных направлений (a = b) следует, что симметрия кристаллов средней категории описывается группами с единственной осью высшего порядка: . С этой осью совмещают вертикальную координатную ось z , а две другие – x и y – выбирают в плоскости, перпендикулярной главной оси. Поэтому углы между главной осью и осями x и y прямые, т. е. a = b = 90°. Угол g между осями x и y определяется порядком главной оси и равен 90° в случае присутствия оси 4-го порядка и 120° ‑ в случае осей 3-го и 6-го порядков. Поэтому в средней категории выделяют две координатные системы, которым соответствуют две сингонии.

3. кристаллы высшей категории (a = b = c ) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в их группах симметрии нескольких осей высшего порядка.

Итак, на этих трех трансляциях можно построить элементарный параллелепипед – элементарную ячейку. Параметры a , b , c , a , b , g - параметры элементарной ячейки.

Напомню правила выбора элементарной ячейки (правила выбора кристаллографических осей координат) .

1. Выбранная ячейка должна иметь симметрию решетки.

2. Кристаллографические оси направлены вдоль узловых рядов.

3. Кристаллографические оси координат совмещают с особыми направлениями, т. е. с осями симметрии 2-го порядка и выше (при наличии таковых).

4. При прочих равных условиях элементарная ячейка должна иметь минимальный объем.

Если в трехмерном пространстве выбрать какую-либо точку (не обязательно материальную) и посчитать ее одним из узлов решетки, то в остальных ее узлах окажутся все точки этого пространства, идентичные (физически и геометрически) исходной.

В этом смысле решетка это выразитель кристаллического состояния вещества , ибо любое кристаллическое вещество, даже лишенное каких-либо иных элементов симметрии, всегда обладает этим основным элементом симметрии ‑ решеткой, или решетчатым строением.

Как и всякая параллелепипедальная система, трехмерная решетка обладает рядом собственных симметрийных особенностей. Она всегда центросимметрична, при этом центры инверсии находятся как в узлах решетки ‑ в вершинах параллелепипедов, так и на серединах расстояний между ними. Оси высших порядков неизбежно сопровождаются пересекающимися вдоль них плоскостями симметрии. Сами же оси симметрии ограничены только кристаллографическими порядками, т. е. n = 1, 2, 3, 4, 6. Последнее условие однозначно выбирает из бесконечного числа точечных групп, описывающих симметрию конечных исходных фигур, лишь 32 кристаллографические точечные группы.

Точечные группы симметрии решетки как геометрического образа отвечают старшему - голоэдрическому - классу каждой сингонии .

Трехмерная решетка может быть представлена тремя некомпланарными трансляционными векторами, а значит построенный на этих векторах параллелепипед ‑ параллелепипед повторяемости ‑ будет ячейкой решетки . Для того чтобы параллелепипед мог служить характеристической ячейкой какой-либо решетки, т. е. отражал бы ее главные симметрийные особенности, необходимо, чтобы его ребра (трансляционные векторы) совпали с особыми направлениями максимальной симметрии, т. е. с направлениями кристаллографических координатных осей. Ячейку, выбранную таким образом, называют ячейкой Браве или элементарной ячейкой . Тип и симметрия ячейки отражаются в ее названии, которое она передает и соответствующей ей пространственной решетке (рисунок 3). Поскольку форму ячейки Браве определяет координатный репер, семь разных по симметрии решеток (, , mmm, https://pandia.ru/text/80/189/images/image013_92.gif" width="46" height="41 src=">.gif" width="14" height="19 src=">m ) могут быть представлены шестью типами параллелепипедов (ибо гексагональные решетки обслуживаются одним и тем же координатным репером, а значит, и одинаковыми по форме ячейками Браве ‑ параллелепипедами со 120-градусным ромбом в основании).

Чтобы охарактеризовать тип решетки, необходимо и достаточно указать два ее признака:

1. кристаллографическую систему;

2. тип «центрирования» ячейки.

Элементарные ячейки могут быть:

1. примитивными – узлами являются лишь вершины ячейки;

2. центрированными – есть дополнительные узлы, не лежащие в вершинах ячейки.

Рисунок 3 – Типы решеток Бравэ

Если кристаллографические оси выбраны правильно, то дополнительные узлы возможны не в любом месте, а только в строго определенных позициях. При этом число возможных вариантов невелико. Непримитивные решетки называются центрированными.

Непримитивные (центрированные) решетки могут быть типа:

I ‑ объемноцентрированная (узел находится в центре объема)

С (А, В) – базоцентрированная (центрированы две противоположные грани)

F – гранецентрированная (дополнительные узлы находятся в центрах всех граней)

R – дважды объемноцентрированная (два дополнительных узла делят объемную диагональ на три равные части)

Правила, определяющие выбор координатных систем в группах разных кристаллографических систем (сингоний), по-разному ограничивают и способы центровки их решеток.

Для описания симметрии кристаллических структур пользуются понятием «пространственная группа».

Совокупность элементов симметрии кристаллической структуры называется пространственной группой.

Описать структуру это значит указать:

2) тип решетки Бравэ;

3) тип химической формулы;

4) КЧ и координационные полиэдры;

5) число формульных единиц и т. д.

6) характеристику структуры по типу химической связи;

7)характеристику структуры по геометрическому признаку;

8) структуру в терминах ПШУ-ПШК;

9) базисные координаты атомов;

10) пространственную группу и структурный тип.

Структура металлов наряду со структурой неметаллических элементарных кристаллов представлена на рисунке 4.

В нижней строчке каждого квадрата указана форма, стабильная при комнатной температуре, а выше следуют формы, реализующиеся при более высоких температурах.

Аббревиатура ГЦК обозначает гранецентрированную кубическую структуру с плотнейшей упаковкой атомов, ОЦК ‑ объемно-центрированную кубическую структуру, ГПУ ‑ гексагональную структуру с плотнейшей упаковкой атомов.

Структуры ГЦК и ГПУ нагляднее всего описываются в рамках модели плотнейших шаровых упаковок (ПУ), впервые предложенной в 1926 г. В. Гольдшмидтом. Атомы представляются в виде жестких шаров, и в плоскости имеется единственный вариант их плотного расположения (рисунок 5 а).

Если второй слой поместить так, что его шары окажутся расположенными в углублениях первого слоя, то плотнейшая упаковка достраивается, причем также единственно возможным способом (рисунок 5 б). Что касается шаров третьего слоя, то их можно расположить двумя способами:

1) шары третьего слоя над шарами первого, шары четвертого над шарами второго и т. д., так что чередующиеся слои соответствуют последовательности АВАВАВАВ (где буквы А и В обозначают плотноуложенные слои, сдвинутые друг относительно друга в горизонтальной плоскости), а способ укладки отвечает гексагональной плотнейшей упаковке (ГПУ) (рисунок 6, а);

2) шары третьего слоя по отношению к шарам второго слоя расположены так, что не находятся над шарами первого слоя.

Тогда четвертый слой повторяет первый, второй повторяет пятый и т. д. Чередование слоев соответствует АВСАВС... ABC, а способ укладки отвечает кубической плотнейшей упаковке (ГЦК) (рисунок 6, б). В структуре ГПУ упаковки шаров в плоскости слоя и по вертикали к нему различны, а в структуре ГЦК упаковка одинакова в любой из трех основных плоскостей куба (т. е. менее анизотропна). Несмотря на различия, эти два типа плотнейших шаровых упаковок демонстрируют общие черты:

1) доля пространства, занятого шарами, ‑ коэффициент заполнения, в обоих случаях равен 74,05%;

2) координационное число атома составляет 12;

3) в обеих упаковках имеется два типа пустот ‑ тетраэдрические, образованные четырьмя соприкасающимися шарами, и октаэдрические, соответственно образованные шестью шарами; в тетраэдрическую пустоту может поместиться шарик с радиусом r тетр = 0,225 r , а в октаэдрическую шарик с радиусом r окт =0,414 r , где r - радиус шаров, из которых составлена плотнейшая упаковка;

4) в плотнейших упаковках в расчете на один шар приходится одна октаэдрическая и две тетраэдрических пустоты.

В концепции плотнейших упаковок полиморфизм рассматривается как отличный от ГЦК и ГПУ порядок чередования плотноупакованных слоев.

В качестве примера можно привести последовательность слоев в четырехслойной гексагональной упаковке...АВСВАВСВ... (обозначается как 4Н).

Из шаровых упаковок с меньшей плотностью наиболее часто встречается объемноцентрированная кубическая упаковка (ОЦК), для которой коэффициент заполнения составляет 68,01%.

Упаковку этого типа можно получить, если шары одинакового размера разместить на плоскости так, чтобы образовалось их квадратное расположение, тогда шары второго слоя следует расположить в углублениях, образованных шарами первого слоя (рисунок 7), шары третьего слоя будут повторять первый и т. д. Как и в случае структуры ГПУ, чередование слоев отвечает последовательности АВАВ...АВ, однако каждый из слоев не является плотноупакованным; в отличие от ГЦК и ГПУ, где координационное число атомов равно 12, рассматриваемая структура имеет координационное число 8.

Рисунок 7 – Объемноцентрированная кубическая решетка

Легко видеть, что для металлов характерен полиморфизм (аллотропия) (рисунок 2), причем достаточно незначительного изменения в электронной структуре атомов, чтобы произошла перестройка кристаллической решетки. Теплота взаимного перехода между структурами ГЦК и ГПУ не превышает 1 кДж/моль, тогда как теплота плавления составляет от 10 до 40 кДж/моль.

Подавляющее большинство металлов имеет одну из трех структур (ГЦК, ОЦК, ГПУ), a Mn, Ga, In, Hg ‑ аналогичные, но искаженные структуры. Между типом структуры и положением металла в периодической системе Менделеева трудно обнаружить простые закономерности. Тем не менее очевидно, что повышение числа неспаренных валентных s - и р -электронов в состоянии, используемом для образования связи с 1 (щелочные металлы) до 3 (металлы третьей главной подгруппы), увеличивает КЧ с 8 (ОЦК решетка) до 12 (ГЦК или ГПУ решетка). При полиморфизме эффект от повышения числа валентных электронов эквивалентен понижению температуры или повышению давления.

Все неметаллические элементы, кроме кислорода, диамагнитны. Металлы, за исключением принадлежащих к группам 1Б‑IIIБ, являются парамагнитными. Среди металлов исключительно высоким магнетизмом обладают железо, кобальт и никель. По виду температурной зависимости можно выделить следующие группы металлов: магнитные свойства почти не изменяются вплоть до 1100 °С (Mo, W, Os); магнитная восприимчивость подчиняется закону Кюри-Вейса (К, Mg, Zn, In, Sc); магнитные свойства изменяются в слабой степени при температуре плавления (Na, Cd, A1); с аномальным изменением магнитных свойств (Ag, Аи, Tl, Sn, Pb, Sb, Bi) и, наконец, магнитные свойства изменяются (Zn, Tl) или не изменяются (Ti, Sn) в точках перехода. Упорядоченное в соответствии с периодическим законом Менделеева множество химических элементов подразделяется на подмножества, т. е. достаточно изолированные области химических элементов, соответствующие типичным металлам, ферромагнетикам, сверхпроводникам, диэлектрикам, полупроводникам и полуметаллам.

1.4. Основные типы кристаллических структур

Точечное расположение атомов в пространственных решетках является упрощенным и непригодным для изучения кристаллических структур, когда определяется расстояние между ближайшими атомами или ионами. Однако физические свойства кристаллических структур зависят от химической природы веществ, размеров атомов (ионов) и сил взаимодействия между ними. Поэтому в дальнейшем будем считать, что атомы или ионы имеют форму шара и характеризуются эффективным радиусом , понимая под ним радиус сферы их влияния, равный половине расстояния между двумя ближайшими соседними однотипными атомами или ионами. В кубической решетке эффективный атомный радиус равен а 0 /2.

Эффективный радиус имеет различные собственные значения в каждой определенной структуре и зависит от природы и числа соседних атомов. Атомные радиусы разных элементов можно сравнивать только тогда, когда они образуют кристаллы с одинаковым координационным числом. Координационным числом z данного атома (иона) называют число окружающих его ближайших однотипных атомов (ионов) в кристаллической структуре. Мысленно соединив прямыми линиями центры соседних частиц друг с другом, получим

координационный многогранник ; при этом атом (ион), для которого строится такой многогранник, находится в его центре.

Координационное число и отношение эффективных радиусов частиц определенным образом связаны друг с другом: чем меньше различие в размерах частиц, тем больше z .

В зависимости от кристаллической структуры (типа решетки), z может изменяться от 3 до 12. Как будет показано ниже, в структуре алмаза z = 4, в каменной соли z = 6 (каждый ион натрия окружен шестью ионами хлора). Для металлов характерно координационное число z = 12, для кристаллических полупроводников z = 4 или z = 6. Для жидкостей координационное число определяется статистически как среднее число ближайших соседей любого атома.

Координационное число связано с плотностью упаковки атомов в кристаллической структуре. Относительная плотность упаковки

это отношение объема, занимаемого атомами, к общему объему структуры. Чем больше координационное число, тем выше относительная плотность упаковки.

Раздел 1. Основныеположен ия физико химическо й кристаллографии

Кристаллическая решетка стреми тся обладать минимумом свободной энергии. Это возмож но только в том случае, когда каждая частица будет взаимодействовать с максимально возм ожным числом других частиц. Иначе говоря, координационное число должно быть максимальны м. Стремление к плотней шей упаковке свойственно всем типам кристаллических структур.

Рассмотрим плоскую структуру, состоя щую из атомов одной природы, которые касаются друг друга и заполняют бóльшую часть пространства. В этом случае возможе н только один способ плотнейшей упаковки атомов, прилегающих друг к другу: вокруг центрально-

центры тяжести приходятся н а пустоты первого слоя. Это хорошо видно на правом изображении на рис. 1.10, а (вид сверху), где проекции атомов второго слоя окрашены в бледно-серый цвет. Атомы второго слоя образуют базисный треугольник (показан сплошной линией) с вершиной, направленной вверх.

Рис. 1.10. Последовательность слоев при упаковке шаров одина кового размера в структурах двух типов: a – АВАВ... при гексагональной плотнейшей упаковке (ГПУ); б – АВСАВС... пр и кубической плотнейшей у паковке (К ПУ), дающей гранецентрированную кубическую (ГЦК) решетку. Для нагляд ности третий и четверт ый слои показаны не полностью заполн енными

Глава 1. Элементы кристаллофизики

Атомы третьего слоя могут располагаться двумя способами. Если центры тяжести атомов третьего слоя находятся над центрами тяжести атомов первого слоя, то повторится укладка первого слоя (рис. 1.10, а ). Результирующая структура представляет собой гексагональную плотнейшую упаковку (ГПУ). Ее можно представить в виде последовательности слоев АВАВАВАВ … в направлении оси Z .

Если атомы третьего слоя C (показаны темно-серым цветом справа на рис. 1.10, б ) расположены над другими пустотами первого слоя и образуют базисный треугольник, развернутый относительно слоя B на 180º (показан пунктиром), а четвертый слой идентичен первому, то результирующая структура представляет собой кубическую плотнейшую упаковку (КПУ), которая соответствует гранецентрированной кубической структуре (ГЦК) с последовательностью слоев АВСАВСАВСАВС … в направлении оси Z .

Для плотнейших упаковок z = 12. Это хорошо видно на примере центрального шара в слое В : его ближайшее окружение составляют шесть шаров слоя А и по три шара ниже и выше его в слоях В

(рис. 1.10, a ).

Кроме координационного числа z различные структуры характеризуются также плотностью упаковки, вводимой как отношение объема V ат , занимаемого атомами, к объему всей ячейки Браве V яч . Атомы представляются твердыми шарами радиусом r , поэтому V ат = n (4π/3)r 3 , где n – число атомов в ячейке.

Объем кубической ячейки V яч = a 0 3 , где а 0 – период решетки. Для ячейки ГПУ с площадью шестиугольного основания S = 3a 0 2 2 3

и высотой c = 2a 0 23 получаем V яч = 3a 0 3 2 .

Соответствующие параметры кристаллических структур – примитивной кубической (ПК), объемно-центрированной кубической (ОЦК), гранецентрированной кубической (ГЦК), гексагональной плотноупакованной (ГПУ) – приведены в табл. 1.2. Радиусы атомов записаны с учетом того, что они соприкасаются вдоль ребер куба в ПК-структуре (2r = а 0 ), вдоль пространственных диагоналей (4r = a 0 3) в ОЦК-структуре и вдоль диагоналей граней (4r = a 0 2)

в ГЦК-структуре.

Таким образом, в структурах с плотнейшей упаковкой (ГЦК и ГПУ), имеющих z = 12, объем ячейки на 74 % занят атомами. C уменьшением координационного числа до 8 и 6 плотность упаковки снижается соответственно до 68 (ОЦК) и 52 % (ПК).

Таблица 1.2

Параметры кубических и гексагональных кристаллов

Параметры кристалла

Координационное число z

Число атомов n в ячейке

Радиус атома r

а 0 /2

a 2 4

а 0 /2

Объем одного атома, V ат /n

a 0 3 π 6

a3 π

a 3 π 2 24

π a 0 3 6

Плотность упаковки,

π 3 8 = 0, 6

π 2 6 = 0,74

π 2 6 = 0,74

V ат/ V яч

Уже отмечалось, что при кристаллизации вещества система стремится обеспечить минимум свободной энергии. Одним из факторов, снижающих потенциальную энергию взаимодействия между частицами, является их максимальное сближение и установление взаимной связи с возможно бóльшим числом частиц, т. е. стремление к более плотной упаковке с наибольшим координационным числом.

Тенденция к реализации плотнейшей упаковки свойственна всем типам структур, но сильнее всего она выражена в металлических, ионных и молекулярных кристаллах. В них связи ненаправленные или слабонаправленные (см. гл. 2), так что для атомов, ионов

и молекул вполне приемлемой является модель твердых несжимаемых шаров.

Трансляционными решетками Браве, приведенными на рис. 1.3

и в табл. 1.1, не исчерпываются все возможные варианты построения кристаллических структур, в первую очередь для химических соединений. Дело в том, что периодическое повторение ячейки Браве дает трансляционную решетку, состоящую только из частиц (молекул, атомов, ионов) одного сорта. Поэтому структуру сложного соединения можно построить комбинацией решеток Браве, определенным образом вставленных одна в другую. Так, полупроводниковые кристаллы используют направленную ковалентную (неполярную или полярную) связь, которая обычно реализуется путем комбинации, по крайней мере, двух решеток, по отдельности достаточно плотно упакованных, но в итоге обеспечивающих малые координационные числа «суммарной» решетки (вплоть до z = 4).

Существуют группы веществ, характеризующиеся идентичным пространственным расположением атомов и отличающиеся друг от друга только параметрами (но не типом) кристаллической решетки.

Поэтому их структуру можно описать с помощ ью одной пространственной модели (одним структурным типом ) с указанием конкретных значений параметров решетки для каждого вещ ества. Таким образом, кристаллы различных вещес тв относятся к ограниченному числу структурных типов.

Наиболее часто встречаются следующие типы структур:

в металлических кристаллах :

структура вольфрама (ОЦ К-решетка); структура меди (ГЦК-ре шетка), структура магния (ГПУ-решетка);

в диэлектрических кристаллах :

структура хлористого натрия (сдвоенная Г ЦК-решетка); структура хлористого цезия (сдвоенная ПК-решетка);

в полупроводни ковых кристаллах:

структура алмаза (сдвоенная ГЦК-решетка); структура сфалер ита (сдвоенная Г ЦК-решетка); структура вюрцита (сдвоенная ГП У-решетка).

Рассмотрим кратко особенности и реализуемость перечисленных выше структур и соответствующие им решетки Браве.

1.4.1. Метал лические кристаллы

Структура вольфрама (рис. 1.1 1, а ). Объемно-центрированная кубическая решетка не является структурой с плотнейш ей упаковкой, имеет относительную плотность упаковки 0,6 8 и координационное число z = 8. Наиболее плотно упакованы плоско сти {11 1}.

Рис. 1.11. Типы кубических решеток: а – объемно-центрированная кубиче ская (ОЦК); б – простая куб ическая

Раздел 1. Основные положения физико химической кристаллографии

Помимо вольфрама W, ОЦК-решетку имеют все щелочные и щелочно-земельные металлы, а также большинство тугоплавких металлов: хром Cr, железо Fe, молибден Mo, цирконий Zr, тантал Ta, ниобий Nb и др. Последнее находит следующее объяснение. В ячейке ОЦК для центрального атома ближайшими соседями являются атомы в вершинах куба (z = 8). Они отстоят друг от друга на расстоянии

шесть центральных атомов в соседних ячейках (вторая координационная сфера), что практически увеличивает координационное число до z 14. Это дает суммарный выигрыш энергии, компенсирующий отрицательный вклад от небольшого увеличения средних расстояний между атомами по сравнению с ГЦК-решеткой, где атомы находятся на расстоянии d = a 0 ( 2) 2 = 0,707a 0 . В результате повышается проч-

ность кристаллов, проявляющаяся в их высокой температуре плавления, достигающей для вольфрама 3 422 ºС. Для сравнения: простая кубическая структура (рис. 1.11, б ) с z = 8 имеет неплотную упаковку и встречается только у полония Ро.

Структура меди (ГЦК-решетка), показанная на рис. 1.12, а , относится к плотноупакованным структурам, имеет относительную плотность упаковки 0,74 и координационное число z = 12. Кроме меди Cu она характерна для многих металлов, таких как золото Au, серебро Ag, платина Pt, никель Ni, алюминий Al, свинец Pb, палладий Pd, торий Th и др.

Рис. 1.12. Структуры плотноупакованных кристаллических решеток: а – гранецентрированная кубическая (структура меди); б – гексагональная плотноупакованная (структура магния)

Глава 1.Элементы кристаллофизики

Перечисленные металлы сравнительно мягкие и пластичные. Дело в том, что в структурах типа меди тетраэдрические и октаэдрические пустоты в ГЦК-решетке не заполнены другими частицами. Это допускает, в силу ненаправленности связей между атомами, их смещение по так называемым плоскостя м скольж ения . В решетке ГЦК таковыми являются плоскости наибольшей упаковки {111}, одна из которых изображена заштрихованной на рис. 1.12, а .

Структура магния (ГПУ-решетка), показанная на рис. 1.12, б , характерна не только для магния Mg, но и для кадмия Cd, цинка Zn, титана Ti, таллия Tl, бериллия Be и др., а также для большинства редкоземельных элементов. В отличие от ПК-решетки, ГПУ-решетка на рис. 1 .12, б имеет слой В (заштрихованный), расположенный посередине между базисными слоями А на фиксированном расстоянии

с 2 = a 0 2 3 (с наблюдаемым отклонением вплоть до 10 % для неко-

торых металлов). Атомы в слоях В размещаются над центрами треугольников в базисной плоскости (0001) с плотнейшей упаковкой.

1.4.2. Диэлектрические кристаллы

Структура хлористого натрия (рис. 1.13, а ) может быть опи-

сана как две гранецентрированные кубические решетки (структурный тип меди), сдвинутые на полпериода решетки (a 0 /2) вдоль любого из ребер <100>.

Крупные анионы хлора Cl− занимают узлы ГЦК-ячейки и образуют кубическую плотнейшую упаковку, в которой катионы натрия Na+ , имея меньший размер, заполняют только октаэдрические пустоты. Иными словами, в структуре NaCl каждый катион окружен четырьмя анионами в плоскости (100) и двумя ионами в перпендикулярной плоскости, которые находятся на равном расстоянии от катиона. В результате имеет место октаэдрическая координация. Это в равной степени справедливо и для анионов. Поэтому отношение координационных чисел подрешеток равно 6:6.

Структура хлористого цезия CsCl (сдвоенная ПК-решетка),

показанная на рис. 1.13, б , состоит из двух примитивных кубических решеток, сдвинутых на половину объемной диагонали. Дело в том, что ионы цезия больше ионов натрия и не могут поместиться в октаэдрических (и тем более в тетраэдрических) пустотах решетки хлора, если бы она была типа ГЦК, как в структуре NaCl. В структуре CsCl каждый ион цезия окружен восемью ионами хлора и наоборот.

В структуры этого типа кристаллизуются и другие галогениды, например Cs (Br, I), Rb (Br, I), Tl (Br, Cl), полупроводниковые соединения типа AIV BVI и многие сплавы редкоземельных элементов. Подобные структуры наблюдаются и в гетерополярных ионных соединениях.

1.4.3. Полупроводниковые кристаллы

Структура алмаза представляет собой сочетание двух ГЦКрешеток, вставленных одна в другую и сдвинутых по пространственной диагонали на четверть длины (рис. 1.14, а ). Каждый атом окружен четырьмя, которые расположены в вершинах тетраэдра (жирные линии на рис. 1.14, а ). Все связи в структуре алмаза равноправны, направлены по <111> и составляют друг с другом углы 109º 28" . Решетка алмаза относится к неплотноупакованным структурам с координационным числом z = 4. В структуре алмаза кристаллизуются германий, кремний, серое олово. Кроме алмаза в структуре этого типа кристаллизуются также элементарные полупроводники – кремний Si, германий Ge, серое олово Sn.

Структура сфалерита (сдвоенная ГЦК-решетка). Если две вспомогательные гранецентрированные кубические решетки образованы разными атомами, то возникает новая структура, называемая структурой сфалерита ZnS или цинковой обманки (рис. 1.14, б ).

Глава 1.Элем енты кристаллофизи ки

Рис. 1 .14. Структуры алм аза (а ), с фалерита (б ), вюрцита (в ). Жирными линиями выделены т етраэдрические связи

Такой структурой обладают многие полупроводниковые соединения типа AIII BV (арсенид галлия GaA s, фосфид галлия GaP, фосфид индия InP, антимонид индия I nSb и др.) и типа AII BVI (селенид цинка ZnSe, теллури д цинка ZnTe, сульфид кадмия CdS, селенид кадмия

Структура сфалерита идентична структуре алмаза с тетраэдрическим окружением атомов (рис. 1.14, а ), только одна ГЦКподрешетка занята ат омами галлия Ga, а другая – атомами мышьяка As. В ячейке GaAs отсутствует центр симметрии, т. е. структура полярна по четырем направления м < 111 > . Наблюдается различие между плотноупак ованными плоскостями 111) и (111 ): если одна из них содержит ато мы Ga, то другая – атомы As. Это обусловливает анизотропию свойств поверхности (микротвердость, адсорбция, химическое травление и т. п.).

В структуре сфалерита треугольные основания тетраэдров любого слоя ориентированы так же, как и основания тетраэдров предыдущего слоя.

Структура вюрцита (с двоенная ГПУ-решетка), изображ енная на рис. 1.14, в , характерна для гексагональной модификации сульфида цинка. Такой структурой обладают бл изкие к ZnS полупроводники, например сульфид кадмия CdS и селенид кадмия CdSe. Для большинства соедине ний AII B VI хара ктерен ф азовый переход «сфалерит – вюрцит». Структура вюрцита реализуется, если атом неметалла имеет малые размеры и большую электроотр ицательность.

На рис. 1.14, в приведена примитивная ячейка вюрцита для ZnS в форме прямой призм ы с ромбом в основании и углом 120° в центре шестиугольника, образованного тремя такими призмами (две из которых показаны на рису нке).

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Расположение атомов, ионов, молекул в кристалле. Кристалл с определ. хим. ф-лой имеет присущую ему К. с., обладающую трёхмерной периодичностью - кристаллической решеткой. Термин "К. с." употребляют вместо термина "кристаллич. решётка", когда идёт об энергии решётки, динамике решётки, о решётке как конкретной структуре того или иного хим. соединения, об описании атомного строения конкретных соединений и их модификаций. Геом. описание конкретной К. с. состоит в указании координат центров атомов в элементарной ячейке кристалла, что позволяет определять межатомные расстояния и тем самым изучать геом. особенности К. с.

Осн. методами исследования К. с. являются дифракционные - рентгеновский структурный анализ, нейтронография , электронография. Дифракционные методы дают непрерывное, усреднённое по времени и по всему объёму кристалла рассеивающей материи в элементарной ячейке К. с. Методами рентг. анализа получают электронной плотности в кристалле, к-рое рассчитывается как ряд Фурье:

где х, у, z - координаты в элементарной ячейке, - её объём, F hkl - коэф. Фурье, наз. структурными амплитудами. Распределение электронной плотности в ячейке можно приближённо представить как сумму электронных плотностей атомов (r i ):

где i - усреднённые во времени, т. е. размазанные тепловым движением, распределения электронов в атоме. Максимумы (1) соответствуют атомам - сгусткам электронной плотности, что позволяет найти координаты их центров r ( х, у, z ) и создать геом. модель, установив межатомные расстояния с точностью до 0,0001 - 0,00001 нм.

В нейтронографии аналогично (1) по амплитудам ядерного рассеяния кристалла F нейтр определяют распределение ядерной плотности п(r )ячейки, т. е. вероятностное, размазанное тепловым движением распределение ядер (см. Нейтронография структурная). При наличии у атомов магн. момента нейтронографически определяют магн. К. с.- распределение спиновой плотности (см. Магнитная ). В электронографии по амплитудам F эл согласно (1) определяют распределение электростатич. (суммарного - ядер и электронов) потенциала (r). Положение максимумов всех трёх распределений совпадает - это и есть среднее во времени положение центров атомов (ядер) в элементарной ячейке.

Геометрическая модель. Для создания геом. модели К. с. необходимо: знание параметров элементарной ячейки (параллелепипеда повторяемости) структуры - в общем случае длин её рёбер а, Ь, с и углов ; указание симметрии К. с., т. е. принадлежности её к одной из 230 пространственных групп (см. Симметрия кристаллов )и тем самым - типу Браве решётки ;. указание координат всех химически различных атомов и симметрии их позиций. Для этого достаточно знать координаты атомов в симметрически независимой части ячейки, из к-рых можно с учётом операций пространственной группы вывести положение всех атомов К. с. На этой основе рассчитываются межатомные расстояния, взаимная координация атомов и др. геом. характеристики К. с. Графически К. с. изображают расположением атомов ("шариков") в элементарной ячейке (рис. 1, а). Крупными соприкасающимися "шарами" в случае необходимости можно показать контакты атомов в плотноупакованных неорганич. (рис. 1, б )или молекулярных структурах. Для изображения ионных К. с. часто пользуются полиэдрами, в вершинах к-рых находятся анионы, в центрах - катионы (рис. 1, в).

Геом. анализ К. с. позволил развить целый ряд обобщений и законов атомной структуры кристаллов- представления об атомных радиусах, о типах хим. связи в кристаллах (ионной, ковалентной, металлической, ван-дер-ваальсовой, водородной), правила плотнейшей упаковки атомов и молекул в К. с., связи К. с. со свойствами кристаллов (см. Кристаллохимия). Анализ К. с. и её симметрии служит отправным пунктом расчётов энергетич. спектра, истолкования физ. свойств кристалла (см. Кристаллофизика).

Параметры элементарных ячеек некоторых кристаллов

Типы кристаллов

Периоды элементарной ячейки, нм

Число атомов в элементарной ячейке

Неорганические и простые молекулярные соединения

до сотен

Сложные органические соединения

до тысяч

Вирусы

Изучено более 100 тыс. К. с. разл. веществ, из них ок. 20 тыс. неорганич. К. с. элементов, разл. соединений, минералов, остальную - большую часть - составляют органич. К. с. Периоды решётки разл. кристаллов составляют от долей до сотен нм (табл.). Рентге-ноструктурный анализ К. с. органич. соединений есть наиб. точный и достоверный метод определения пространственного и хим. строения составляющих их молекул. Изучено неск. сотен К. с. сложнейших веществ биол. происхождения: белков, нуклеиновых кислот, вирусов (см. Биологический кристалл). Существуют международные ЭВМ-банки данных, описывающие все неорганич., органич. и биологич. К. с.

Рис. 1. Модели кристаллических структур: а - алмаз, б - хлористый NaCl, в - бафертисит BaFe 2 Tl (Si 2 O 7)O(OH).

Совр. прецизионные дифракционные методы позволяют, кроме координат атомов (геом. модели), определять др. характеристики К. с.

Экспериментально можно детально определить ан-гармонизм тепловых колебаний атомов К. с., описываемый тензорами более высокого ранга. Поверхность, характеризующая колебания, уже не является трёхосным гауссовым эллипсоидом и не имеет центра симметрии. Параметры энгармонизма позволяют связать характер колебаний атомов с акустич., сегнетоэлектрич. свойствами кристаллов, указать возможные смещения атомов при фазовых переходах в высокотемпературные модификации К. с. Частоты колебаний атомов в К. с. составляют порядка 10 12 Гц, их определяют спектроскопич. методами, методом неупругого рассеяния нейтронов (см. Колебания кристаллической решётки).

Рис. 2. Эллипсоиды тепловых колебаний атомов в решётке: а - общий случай произвольной ориентации; б - анизотропия колебаний в структуре, - ацетилена - bis-циклопентадиена никеля при З00 К. Слева - ацетилена, справа - циклопентадиена.

Вычитая из наблюдаемого распределения (r )(1) распределение (r )(2), можно найти деформационную электронную кристаллической структуры.

Дело в том, что выражение (2) является суммой свободных "проатомов" К. с., размазанных тепловым движением, электронная плотность к-рых не изменена вследствие образования хим. связи в К. с., а выражение (1) соответствует электронной плотности кристалла, в к-рой все эти связи образовались. Несмотря на то, что значения невелики, они позволяют выявить ряд тонких деталей К. с. (рис. 3). Так, появление максимума на месте "проатома" показывает на излишек электронов в нём, т. е. что этот заряжен отрицательно, т. к. является анионом, а появление минимума - что он является катионом; по величине dr деф можно оценить степень ионизации. В ионных К. с. электроны перераспределяются между атомами, но в "межатомном пространстве" практически =0. В металлич. К. с. часть электронов атомов обобществлена и образует равномерную электронную плотность межатомного пространства. В ковалентных кристаллах отчётливо выявляет пики между атомами, соответствующие парам электронов, образующих ковалентную связь. В молекулярных кристаллах фиксируются пики , соответствующие неподелённым электронным парам атомов (рис. 3). Математич. обработка (r )и позволяет находить распределение электростатич. потенциала электронов, потенциальную энергию, градиент поля на атомах и т. п. С помощью электронографии можно находить суммарный (ядер и электронов) деформац. атомов и определять их .

Рис. 3. Деформационная электронная плотность циануровой кислоты. Пики на связях - валентные связывающие электроны, около атома О - неподелённая электронная пара.

Дефекты. К. с., в к-рой все позиции заполнены атомами, наз. идеальной К. с. Однако в действительности К. с. имеет ряд дефектов - точечных (смещения атомов из идеальных позиций, замещение этих атомов атомами примеси, вакансии, атомы внедрения и т. п.), линейных и двумерных (дислокации , ошибки в наложении слоев и т. п.) (см. Дефекты в кристаллах). Если количество точечных дефектов велико, можно фиксировать среднее по всем ячейкам изменение бр электронной плотности К. с., напр. в рубине А1 2 0 3 +0,05% Сr, где Сг замещает позиции А1. В структурах твёрдых растворов вычитания или внедрения анализ бр даёт сведения о заселённости атомами тех или иных позиций.

Наряду с кристаллич. веществами, в к-рых атомы колеблются около фиксиров. положений равновесия, существуют кристаллы, в к-рых отд. атомы, их группировки или целые молекулы статистически занимают разл. положения (см. Твёрдые ). Тепловое молекул в нек-рых кристаллич. структурах таково, что при сохранении положения центра тяжести они могут быть в состоянии сферич. или цилиндрич. вращения. В нек-рых кристаллах при наличии жёсткого трёхмерно-периодич. каркаса структуры из одних атомов нек-рые ионы могут свободно мигрировать, перетекать по каналам каркаса (см. Ионные суперпроводники). Пути миграции заряженных ионог фиксируются распределением dr деф. Аналогично в каркасных К. с., напр. цеолитах, внутри пустот могут находиться молекулы органич. веществ, также фиксируемые по dr.

Рис. 4. Электронно-микроскопическое изображение атомной структуры кластера фосфора в кремнии.

Конкретное расположение дефектов в реальной К. с. исследуется также методами рентгеновской и нейтронной топографии, электронной микроскопии (рис. 4) и др.

Сложные К. с. Наряду с идеальными трёхмернопериодич. К. с. существуют др. типы кристаллич. упорядоченности атомов. Так, в сверхструктурах на "фоне" правильной трёхмерной решётки наблюдается дополнит. упорядоченность с периодами, кратными одномуили двум периодам идеальной К. с., обязанная, напр., распределению магн. моментов атомов, электрич. диполей и т. п. Иногда период такой сверхструктуры не кратен периоду основной решётки, и тогда К. с. наз. несоразмерной. К. с. с периодическими в к.-л. направлении включениями инородных атомов наз. модулированными. Искусственно приготовляемые в микроэлектронике гетероструктуры, напр. AlAs-GaAs, имеют общую, одну и ту же кристаллич. решётку (в смысле равенства периодов), но в них чередуются слои то одного, то другого состава (рис. 5). Существуют К. с. (напр., слоистые силикаты) с неупорядоченным наложением двух пли более сортов слоев фиксиров. строения, напр. структуры из сочленённых "лент" или "колонок" фиксиров. состава. Всё это - фактически когерентное сцепление в едином кристалле на атомном уровне микроучастков разл. К. с.

Рис. 5. Электронная микрофотография расположения атомов в гетероструктуре AlAs-GaAs (увеличение 10 6).

Более сложные нарушения упорядоченности, приводящие к частичной или полной потере осн. признака К. с.- дальнего порядка (см. Дальний и ближний порядок), наблюдаются в структуре полимеров, жидких кристаллов, квазикристаллов.

К. с. конкретных веществ классифицируются по симметрии и тину хим. связей. Многие вещества разного хим. состава, но с одинаковым соотношением числа атомов имеют геометрически подобные К. с., что наз. из о структурностью (напр., MgO и TiN - структурный тип NaCl). Из симметрии К. с. можно предсказать возможные в данном кристалле физ. свойства. Количественные характеристики разных свойств, например упругих, оптических, электрических и т. п., можно увязать с конкретным расположением атомов в К. с., а иногда и прямо рассчитать из К. с. (см. Кристаллы),

Лит.: Structure reports. Publ. for the Intern. Union of Crystallography, Utrecht, 1951-87 - ; Molecular structures and dimensions. Bibliography, ed. by O. Kennard and D. Watson, v. 1-15, Utrecht, 1971-84; Современная , т. 2, M., 1979; Нейтроны и твердое тело, т. 2, М., 1981; Вайнштейн Б. К., Структурная классификация состояний вещества, в кн.: Кристаллография и кристаллохимия, М., 1986; Уоллс А., Структурная неорганическая химия, пер. с англ., т. 1, М., 1987. Б. К . Вайнштейн.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кристамллы (от греч. ксэуфбллпт, первоначально -- лёд, в дальнейшем -- горный хрусталь, кристалл) -- твёрдые тела, в которых атомырасположены закономерно, образуя трёхмерно-периодическую пространственную укладку -- кристаллическую решётку.

Кристаллы -- это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений, составляющих вещество частиц (атомов, молекул, ионов).

Свойства:

Однородность. Это свойство проявляется в том, что два одинаковых элементарных объема кристаллического вещества, одинаково ориентированные в пространстве, но вырезанные в разных точках этого вещества, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, удельный вес, твердость, теплопроводность, электропроводность и др.

Необходимо иметь в виду, что реальные кристаллические вещества очень часто содержат постоянные примеси и включения, искажающие их кристаллические решетки. Поэтому абсолютной однородности в реальных кристаллах часто не бывает.

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс неупругого деформирования кристаллов всегда осуществляется по вполне определённым системам скольжения, то есть лишь по некоторым кристаллографическим плоскостям и лишь в некотором кристаллографическом направлении. В силу неоднородного и неодинакового развития деформации в различных участках кристаллической среды между этими участками возникает интенсивное взаимодействие через эволюцию полей микронапряжений.

В то же время существуют кристаллы, в которых анизотропия отсутствует.

В физике мартенситной неупругости накоплен богатый экспериментальный материал, особенно по вопросам эффектов памяти формы и пластичности превращения. Экспериментально доказано важнейшее положение кристаллофизики о преимущественном развитии неупругих деформаций почти исключительно посредством мартенситных реакций. Но принципы построения физической теории мартенситной неупругости неясны. Аналогичная ситуация имеет место в случае деформации кристаллов механическим двойникованием.

Значительные успехи достигнуты в изучении дислокационной пластичности металлов. Здесь не только понятны основные структурно-физические механизмы реализации процессов неупругой деформации, но и созданы эффективные способы расчёта явлений.

Способнось самоотгоняться - свойство кристаллов образовывать грани при свободном росте.Так. если выточенный из какого-либо вещества шарик, например поваренная соль, поместить в ее пересыщенный раствор, то через некоторе время этот шарик примет форму куба. В противоположенность этому стеклянный шарик не изменит свою форму так как аморфное вещество не может самоотгоняться.

Постоянная точка плавления. Если нагревать кристаллическое тело, то температура его будет повышаться до определенного предела, при дальнейшем нагревании вещество начнет плавиться, а температура некоторре время останется постоянной, так как все тепло пойдет на разрушение кристаллической решетки. Температура, при которой начинается плавленеиЮ называется температурой плавления.

Систематика кристаллов

Кристаллическая структура

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам этого вещества. Кристаллимческая структумра -- такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

В простейшем случае мотивная единица состоит из одного атома, например в кристаллах меди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу -- состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смещение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

§ тип кристаллической решётки (сингония, решётка Браве);

§ число формульных единиц, приходящихся на элементарную ячейку;

§ пространственная группа;

§ параметры элементарной ячейки (линейные размеры и углы);

§ координаты атомов в ячейке;

§ координационные числа всех атомов.

Структурный тип

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, б-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения),перовскита, шпинели (тройные соединения).

Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Размещено на http://www.allbest.ru/

Рис. Кристаллическая решетка

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ -- кварц, тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство -- закономерное положение атомов в кристаллической решётке.

Дефекты кристаллической решетки (реальное строение кристаллов)

В реальных кристаллах всегда имеются отклонения от идеального порядка в расположении атомов, называемые несовершенствами или дефектами решетки. По геометрии вызываемых ими нарушений решетки дефекты подразделяют на точечные, линейные и поверхностные.

Точечные дефекты

На рис. 1.2.5 показаны различные виды точечных дефектов. Это вакансии - пустые узлы решетки, «свои» атомы в междоузлии и атомы примесей в узлах решетки и междоузлиях. Основная причина образования первых двух видов дефектов - движение атомов, интенсивность которого возрастает с повышением температуры.

Рис. 1.2.5. Типы точечных дефектов кристаллической решетки: 1 - вакансия, 2 - атом в междоузлии, 3 и 4 - атомы примесей в узле и междоузлии соответственно

Вокруг любого точечного дефекта возникает местное искажение решетки радиусом R в 1…2 периода решетки (см. рис. 1.2.6), поэтому, если таких дефектов много, они влияют на характер распределения межатомных сил связи и, соответственно, на свойства кристаллов.

Рис. 1.2.6. Локальное искажение кристаллической решетки вокруг вакансии (а) и примесного атома в узле решетки (б)

Линейные дефекты

Линейные дефекты называются дислокациями. Их появление вызвано наличием в отдельных частях кристалла «лишних» атомных полуплоскостей (экстраплоскости). Они возникают в процессе кристаллизации металлов (из-за нарушения порядка заполнения атомных слоев) или в результате их пластического деформирования, как показано на рис. 1.2.7.

Рис. 1.2.7. Образование краевой дислокации () в результате частичного сдвига верхней части кристалла под действием усилия: АВСD - плоскость скольжения; EFGН - экстраплоскость; EН - линия краевой дислокации

Видно, что под влиянием сдвигающего усилия произошел частичный сдвиг верхней части кристалла вдоль некоторой плоскости скольжения («легкого сдвига») АВСD. В результате образовалась экстраплоскость EFGH. Поскольку она не имеет продолжения вниз, вокруг ее края EH возникает упругое искажение решетки радиусом в несколько межатомных расстояний (т.е. 10 -7 см - см. тема 1.2.1), протяженность же этого искажения во много раз больше (может доходить до 0,1…1 см).

Такое несовершенство кристалла вокруг края экстраплоскости является линейным дефектом решетки и называется краевой дислокацией.

Важнейшие механические свойства металлов - прочность и пластичность (см. тема 1.1) - определяются наличием дислокаций и их поведением при нагружении тела.

Остановимся на двух особенностях механизма перемещения дислокаций.

1. Дислокации могут весьма легко (при малой нагрузке) передвигаться вдоль плоскости скольжения посредством «эстафетного» перемещения экстраплоскости. На рис. 1.2.8 показан начальный этап такого движения (двумерный рисунок в плоскости, перпендикулярной линии краевой дислокации).

Рис. 1.2.8. Начальный этап эстафетного перемещения краевой дислокации (). А-А - плоскость скольжения, 1-1 экстраплоскость (исходная позиция)

Под действием усилия атомы экстраплоскости (1-1) отрывают от плоскости (2-3) атомы (2-2), расположенные выше плоскости скольжения. В результате эти атомы образуют новую экстраплоскость (2-2); атомы «старой» экстраплоскости (1-1) занимают освободившиеся места, достраивая плоскость (1-1-3). Этот акт означает исчезновение «старой» дислокации, связанной с экстраплоскостью (1-1), и возникновение «новой», связанной с экстраплоскостью (2-2), или, другими словами, передачу «эстафетной палочки» - дислокации на одно межплоскостное расстояние. Такое эстафетное перемещение дислокации будет продолжаться до тех пор, пока она не дойдет до края кристалла, что будет означать сдвиг его верхней части на одно межплоскостное расстояние (т.е. пластическую деформацию).

Этот механизм не требует больших усилий, т.к. состоит из последовательных микросмещений, затрагивающих лишь ограниченное число атомов, окружающих экстраплоскость.

2. Очевидно, однако, что такая легкость скольжения дислокаций будет наблюдаться лишь в том случае, когда на их пути отсутствуют какие - либо препятствия. Такими препятствиями являются любые дефекты решетки (особенно линейные и поверхностные!), а также частицы других фаз, если они присутствуют в материале. Эти препятствия создают искажения решетки, преодоление которых требует дополнительных внешних усилий, поэтому могут заблокировать движение дислокаций, т.е. сделать их неподвижными.

Поверхностные дефекты

Все промышленные металлы (сплавы) являются поликристаллическими материалами, т.е. состоят из огромного количества мелких (обычно 10 -2 …10 -3 см), хаотически ориентированных кристалликов, называемых зернами. Очевидно, что периодичность решетки, присущая каждому зерну (монокристаллу), в таком материале нарушена, поскольку кристаллографические плоскости зерен повернуты относительно друг друга на угол б (см. рис. 1.2.9), величина которого колеблется от долей до нескольких десятков градусов.

Рис. 1.2.9. Схема строения границ зерен в поликристаллическом материале

Граница между зернами представляет собой переходный слой шириной до 10 межатомных расстояний, обычно с неупорядоченным расположением атомов. Это место скопления дислокаций, вакансий, примесных атомов. Поэтому в объеме поликристаллического материала границы зерен являются двумерными, поверхностными дефектами.

Влияние дефектов решетки на механические свойства кристаллов. Пути повышения прочности металлов.

Прочность - это способность материала сопротивляться деформации и разрушению под действием внешней нагрузки.

Под прочностью кристаллических тел понимают их сопротивление приложенной нагрузке, стремящейся сдвинуть или, в пределе, оторвать одну часть кристалла относительно другой.

Наличие в металлах подвижных дислокаций (уже в процессе кристаллизации возникает до 10 6 …10 8 дислокаций в сечении, равном 1см 2) приводит к их пониженной сопротивляемости нагружению, т.е. высокой пластичности и невысокой прочности.

Очевидно, что наиболее эффективным способом повышения прочности будет удаление дислокаций из металла. Однако такой путь не технологичен, т.к. бездислокационные металлы удается получать лишь в виде тонких нитей (так называемых «усов») диаметром в несколько микрон и длиной до 10 мкм.

Поэтому практические способы упрочнения основаны на торможении, блокировании подвижных дислокаций путем резкого увеличения числа дефектов решетки (в первую очередь линейных и поверхностных!), а также создании многофазных материалов

Такими традиционными методами повышения прочности металлов являются:

– пластическое деформирование (явление наклепа или нагартовки),

– термическая (и химико-термическая) обработка,

– легирование (введение специальных примесей) и, наиболее общий подход, - это создание сплавов.

В заключение следует отметить, что повышение прочности, основанное на блокировании подвижных дислокаций, приводит к снижению пластичности и ударной вязкости и, соответственно, эксплуатационной надежности материала.

Поэтому вопрос о степени упрочнения необходимо решать индивидуально, исходя из назначения и условий работы изделия.

Полиморфизм в буквальном смысле слова означает многоформенность, т.е. явление, когда одинаковые по химическому составу вещества кристаллизуются в различных структурах и образуют кристаллы различных сингогий. Например алмаз и графит имеют одинаковый химический состав, но различные структуры, оба минерала резко отличаются по физ. свойствам. Другим примером может служить кальцит и арагонит - они имеют одинаковый состав СаСО 3 , но представляют различные полиморфные модификации.

Явление полиморфизма связаны с условиями образования кристаллических веществ и обусловлены тем, что в различных термодинамических условиях устойчивыми являются только определенные структуры. Так, металлические олово (так называемое белое олово) при понижении температуры ниже -18 С 0 становится неустойчивым и рассыпается образуя «серое олово» уже иной структуры

Изоморфизм. Сплавы металлов представляют собой кристаллические структуры переменного состава, в которых атомы одного элемента располагаются в промежутках кристаллической решетки другого. Это так называемые твердые растворы второго рода.

В отличие от твердых растворов второго рода в твердых растворах первого рода атомы или ионы одного кристаллического вещества могут замещаться атомами или ионами другого. Последние располагаются в узлах кристаллической решетки. Подобного рода растворы называются изоморфными смесями.

Условия необходимые для проявления изоморфизма:

1) Замещаться могут только ионы одного знака, т.е., катион на катион, а анион на анион

2) Замещаться могут только атомы или ионы близкого размера, т.е. разница величины ионных радиусов не должна превышать при совершенном изоморфизме 15% и несовершенном 25% (например Са 2+ на Mg 2+)

3) Замещаться могут только ионы, близкие по степени поляризации (т.е. по степени ионности-ковалентности связи)

4) Замещаться могут только элементы, имеющие одинаковое координационное число в данной кристаллической структуре

5) изоморфные замещения должны происходить таким образом. Чтобы не нарушался электростатический баланс кристаллической решетки.

6) изоморфные замещения протекают в сторону приращения энергии решетки.

Типы изоморфизма. Различают 4 типа изоморфизма:

1) изовалентный изоморфизм характеризуется тем, что в этом случае происходит ионов одинаковой валентности причем разница в размерах ионных радиусов не должна быть более 15%

2) гетеровалентный изоморфизм. При этом происходит замещение ионов различной валентности. При таком замещении один ион не может замещаться другим без того, чтобы нарушился электростатический баланс кристаллической решетки, поэтому при гетеровалентном изоморфизме замещается не ион, как при гетеровалентном, а группа ионов определенной валентности на другую группу ионов при сохранении той же суммарной валентности.

Необходимо в этом случае всегда помнить что замещение иона одной валентности на ион другой всегда связано с компенсацией валентности. Эта компенсация может происходить как в катионной, так и в анионной части соединений. При этом необходимо соблюдение следующих условий:

А) сумма валентностей замещаемых ионов должна быть равна сумме валентностей замещающих ионов.

Б) сумма ионных радиусов замещаемых ионов должна быть близка к сумме ионных радиусов замещающих ионов и может отличаться от нее не более чем на 15% (для совершенного изоморфизма)

3) изоструктурный. Происходит замещение не одного иона на другой или группы ионов на другую группу, а замещение целого «блока» одной кристаллической решетки на другой такой же «блок». Это может происходить только в том случае, если структуры минералов однотипны и имеют близкие размеры элементарных ячеек.

4) изоморфизм особого рода.

кристалл решётка дефект дислокация

Размещено на Allbest.ru

Подобные документы

    Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.

    курсовая работа , добавлен 09.12.2010

    Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа , добавлен 09.01.2014

    Прохождение тока через электролиты. Физическая природа электропроводности. Влияние примесей, дефектов кристаллической структуры на удельное сопротивление металлов. Cопротивление тонких металлических пленок. Контактные явления и термоэлектродвижущая сила.

    реферат , добавлен 29.08.2010

    Понятие и классификация дефектов в кристаллах: энергетические, электронные и атомные. Основные несовершенства кристаллов, образование точечных дефекто, их концентрация и скорость перемещения по кристаллу. Диффузия частиц за счет движений вакансий.

    реферат , добавлен 19.01.2011

    Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа , добавлен 12.04.2012

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Кристаллизация как процесс перехода металла из жидкого состояния в твердое с образованием кристаллической структуры. Схема образования шва при дуговой сварке. Ключевые факторы и условия, необходимые для начала роста кристаллов из жидкого металла.

    презентация , добавлен 26.04.2015

    Изучение структуры (образование кристаллитами, расположенными хаотическим образом) и способов получения (охлаждение расплава, напыление из газовой фазы, бомбардировка кристаллов нейронами) стекол. Ознакомление с процессами кристаллизации и стеклования.

    реферат , добавлен 18.05.2010

    Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.