Рефераты Изложения История

Методы выделения и очистки твердых веществ. Материалы занятия "химические реактивы и способы их очистки Какие вещества можно очищать возгонкой

Цель занятия: Ознакомления с основными методами очистки веществ, в частности, с фильтрованием под обычным давлением (простым и складчатым фильтром), горячим, под вакуумом.

План занятия:

1. Закрепить знания и навыки по основным методам очистки веществ.

2. По заданию преподавателя провести очитку загрязненной соли методом фильтрования.

Материалы и оборудование: стаканы, стеклянные палочки, плоскодонные и конические колбы, воронки, штатив, фильтровальная бумага, раствор поваренной соли, песок.

Лабораторный практикум

Для очистки веществ в зависимости от агрегатного состояния применяются различные методы. Очистка твердых веществ обычно осуществляется двумя методами: перекристаллизацией и возгонкой, жидкостей - фильтрованием и перегонкой, газов - поглощением примесей различными химическими реагентами.

Для отделения (очистки) жидкостей от нерастворимых твердых веществ применяется фильтрование. Фильтрование осуществляется путем пропускания жидкости через пористые материалы - фильтры.

В качестве фильтрующих материалов могут быть использованы кварцевый песок, асбест, стеклянная вата, фарфоровые пластинки (тигли Гуча), прессованное стекло (тигли Шотта), текстильные ткани, вата, бумажные фильтры (фильтровальная бумага различной платности).

Выбор фильтрующего материала зависит от свойств фильтруемой жидкости, размеров твердых частиц. В лаборатории чаще всего используют бумажные

фильтры - простые или складные. Простой фильтр применяется тогда, когда осадок необходим для дальнейшей работы. Простой фильтр готовят из квадратного листа бумаги, соответствующего по размерам ворони, складывают его пополам (рис. 33), как показано пунктирной линией и еще раз пополам

Внешние углы обрезают по дуге с таким расчетом, чтобы край фильтра был ниже края воронки на 0,5-1 см. Отворачивают одну четвертую часть сложенного фильтра и вставляют в

воронку, прижимают пальцами к стенкам воронки, смачивая дистиллированной водой. Необходимо, чтобы фильтр плотно прилегал к станкам воронки.

Складчатый фильтр. Внимательно ознакомьтесь с изготовлением складчатого фильтра. Проверьте правильность ваших умений по изготовлению складчатого фильтра у преподавателя.

Для легко фильтрующихся жидкостей применяется фильтрование под обычным давлением, трудно фильтруемых - фильтрование под вакуумом. Для вязких жидкостей и насыщенных растворов горячее фильтрование.

Для фильтрования под обычным давлением собирают прибор. Когда жидкости останется немного, осадок взбалтывают и переносят на фильтр. Жидкость, прошедшая через фильтр, называется фильтратом или маточным раствором. Остатки осадка смывают на фильтр дистиллированной водой из промывалки.

Промывание осадков производится водой или специальным растворителем, наливая его небольшими порциями, дают раствору полностью стечь и только после этого наливают следующую порцию. После 4-5 промывок проверяют качественно полноту отмывки от тех или иных примесей. Для этого в чистую пробирку отбирают несколько капель вытекающей жидкости и проводят реакцию на отмываемый ион (например, ион Сl – AgNO 3 ; ион SO 4 – ВаСl 2). Появление мути требует дальнейшего промывания осадка. Промывную жидкость собирают отдельно от основного фильтрата.

Для отделения и промывания труднорастворимых и медленно фильтрующихся осадков применяется метод декантации. До начата фильтрования образовавшемуся осадку дают осесть на дно сосуда. Осветленный раствор осторожно сливают с осадка на фильтр. К осадку вновь приливают растворитель, перемешивают, дают раствору отстояться. Жидкость снова сливают, а к осадку приливают растворитель и так повторяют несколько раз. Затем осадок переносят на фильтр для дальнейшей промывки.

Задание. Собрать прибор для фильтрования под обычным давлением. Ознакомиться со штативом и его сборкой. Отфильтровать по заданию преподавателя 50 мл

взвеси - песок вода, глина - вода. Освоить методик количественного перенесения осадка, пользуясь палочкой и промывалкой.

Для более быстрого отделения твердых веществ от жидкости применяют фильтрование под вакуумом. Фильтрование под уменьшенным давлением производится в приборе, который состоит из толстостенной колбы Бунзена (1) с боковым отростком и вставленной в нее, с помощью резиновой пробки, фарфоровой воронки Бюхнера (2) с решетчатым дном. На дно воронки помешают два фильтра один по диаметру дна воронки, а другой на 0,5 см больше первого. Обрезав по контуру воронки, фильтр окончательно подгоняют к воронке. Меньший фильтр кладется на дно воронки, смачивается водой и прижимается к дну воронки, а сверху кладется второй фильтр, края которого расправляются по стенкам воронки. Разряжение создается с помощью насоса. Прибор присоединяют к насосу для того, чтобы

фильтры плотно присосались к дну и стенкам воронки, затем прибор отключают. В воронку Бюхнера при помощи стеклянной палочки, наливают раствор с осадком, после чего прибор присоединяют к насосу через предохранительную склянку. Разряжение в колбе следует создавать постепенно по мере накопления осадка. Осадок на фильтре следует отжать.

После окончания фильтрования колбу следует отсоединить от предохранительной склянки и только после этого закрыть водопроводный кран.

Для извлечения осадка из воронки ее вынимают из колбы, переворачивают на лист фильтровальной бумаги и, ударяя рукой по воронке, удаляют осадок. Вместо воронки Бюхнера для этих же целей можно пользоваться тиглями Гуча или стеклянными воронками Шотта с различным диаметром пор.

Лапание По указанию преподавателя собрать прибор с воронкой Бюхнера и стеклянной воронкой Шотта. Ознакомиться с работой водоструйного или др. насоса.

Вопросы и задания

1. Для чего служит фильтрование?

2. Зачем используются простые и складчатые фильтры?

3. Назовите материалы из которых сделаны фильтры?

4. Методика фильтрования при обычном давлении.

5. Методика фильтрования под вакуумом.

6. Темы рефератов

7. Опыты, доказывающие сложность строения атома.

8. Попытки систематизации элементов. Открытие периодического закона.

Задачи и упражнения для СРС

Н.Л.Глинка Задачи и упражнения по общей химии. 140-164 задачи и вопросы. Стр.37-39.

Лабораторная работа №3

Тема:Основные приемы работы в химической лаборатории. Весы. Взвешивание

Цель занятия: освоить основные приемы работы в химической лаборатории и овладеть техникой взвешивания Познакомиться с различными видами весов.

План занятия:

1. Ознакомится с работой технических, технохимических, аналитических, электронных весов.

2. По заданию преподавателя провести взвешивание необходимого количества вещества.

Материалы и оборудование: технические весы, технохимические весы, аналитические весы, электронные весы, разновесы.

Лабораторный практикум

Взвешиванием на рычажных весах называют сравнение массы данного тела с массой гирь, масса которых известна и выражена в определенных единицах (мг, г, кг и др.). Весы являются важнейшим прибором в химической лаборатории, так как почта ни одна работа в ней не обходится без определения массы того или иного вещества или тары, в которую помешают взвешиваемое вещество.

Для взвешивания веществ с точностью до 0,01 г применяют техно-химические весы (рис.1)

Рис. 1. Техно-химические весы и разновес (1 - колонка, 2-аррегир, 3 - чашки весов, 4 - стрелка, 5 шкала, 6 отвес, 7 - винты для установки весов в горизонтальном положении, 8 - коромысло, 9 - винты для уравновешивания пустых чашек весов)

Принцип устройства техно-химических и аналитических весов один и тог же. На металлическом коромысле (равноплечий рычаг) имеются три призмы: два на концах и одна посередине его (рис. 2).Средняя призма покоится на пластинке, находящейся на центральной колонке весов и являющейся точкой опоры. В аналитических весах пластинка сделана из агата. На боковых призмах лежат пластинки, к которым подвешиваются чашки весов. Коромысло снабжено длинной стрелкой, которая показывают на шкале величину отклонения коромысла от горизонтального положения. При горизонтальном положении коромысла стрелка находится на нулевом делении шкалы.

Перед взвешиванием необходимо установить весы по отвесу. Переносить или сдвигать весы с места после установки не разрешается. Прежде чем приступить к взвешиванию, необходимо проверить весы. Для этого плавным поворотом винта, приподнимающего и опускающего коромысло (арретир), весы приводят в рабочее положение и наблюдают за качанием стрелки в ту и другую сторону от среднего деления шкалы, находящейся в нижней части весов. Если при этом стрелка отклоняется от средней линии шкалы на равное число делений в обе стороны, или же в одну сторону на 1-2 деления больше, чем в другую, то весы можно считать пригодными к работе. По окончании проверки весы необходимо арретировать, т.е, перевести в нерабочее положение обратным поворотом арретира.

При взвешивании необходимо соблюдать следующие правила:

Ставить предметы и разновесы на чашки весов, снимать их оттуда, касаться чем бы то ни было рабочей части весов можно только после того, как весы полностью арретированы.

Не ставить на чашку весов горячих, мокрых или грязных предметов. При работе с жидкостями ни в коем случае не допускать попадания жидкости на весы и разновесы.

Взвешиваемый предмет помещать на левую чашку весов, а разновесы на правую.

Не класть взвешиваемое вещество непосредственно на чашку весов. Твердые вещества взвешивать на часовых (вогнутых) стеклах, в бюксах, в тиглях или на листочках глянцевой бумаги.

Разновесы брать только пинцетом и при снятии с весов класть их в те гнезда, откуда они были взяты. Ни в коем случае разновесы не класть на стол,

Сначала надо взять разновес, приблизительно соответствующий весу предмета Если разновес оказался больше необходимого, то нужно взять следующий за ним и т.д., до тех пор, пока не будет достигнуто равновесие, т.е. приблизительно такое отклонение стрелки в обе стороны от середины шкалы, какое было перед взвешиванием.

Подсчитав общий вес разновесов, записать его в рабочую тетрадь. Не записывать величину навески на отдельных листах, клочках бумаги.

Не брать гири из другого набора разновесов.

При последовательных взвешиваниях одного или различных предметов, которые производятся в связи с одной работой, следует пользоваться одними и теми же весами и разновесами.

После взвешивания весы обязательно арретировать. Навесах ничего не оставлять.

Каждое взвешивание неизбежно сопровождается ошибкой. Поэтому в целях нахождения веса, возможно более приближающегося к истинному, необходимо произвести 4-5 взвешиваний. При последовательных взвешиваниях предмет с весов каждый раз не снимать. Одно взвешивание отделяется от другого только аррегированием весов.

Допускаемую при взвешивании ошибку можно выразить в виде средней квадратичной ошибки. Расчет средней квадратичной ошибки производится следующим образом. Допустим, что произведено 1,2,3... взвешиваний и получены следующие результаты:

а 1 , а 2 ,.. а п

находим среднее арифметическое из этих значений

Средняя квадратичная ошибка 6 определяется следующим выражением

Таким образом, вес предмета равен: А = а ± 6

Задание, Произвести взвешивание натехно-химических весах двух небольших предметов, взятых у лаборанта (весом от 1 до 100 г), с точностью до 0,01 г. Определить среднюю квадратичную ошибку взвешиваний.

Вопросы и задания

1. Общие правила работы в химической лаборатории.

2. Устройство весов. Точность весов. Методика взвешивания.

3. Ошибки при взвешивании. Среднеквадратичная ошибка взвешивания.

Задачи и упражнения для СРС

Н.Л.Глинка Задачи и упражнения по общей химии. Л» 99-114 задачи и вопросы. Стр.26-27.

Лабораторная работа № 4

Тема: Возгонка.

Цель занятия: Ознакомление с методами очитки веществ: возгонкой, перегонкой, перекристализацией.

Материалы и оборудование: круглодонные колбы, стаканы, воронки, штатив, горелка, ступка, фарфоровая чашка, йод.

Лабораторный практикум

При обычных условиях йод твердое вещество с молекулярной кристаллической решеткой. Когда молекулы улетучиваются с поверхности твердого вещества - это называется возгонкой. И при испарении, и при возгонке получаются пары. Фиолетовый дым - это пары йода, на наших глазах при легком нагревании происходит возгонка йода: переход из твердого состояния в газообразное, минуя жидкое. Пары йода поднимаются и оседают на более холодных стенках пробирки в верхней ее части. Здесь снова образуется твердый йод. Твердый йод становится жидким при 113°С, жидкий йод закипает при 184 ◦ С.

Задание: По указанию преподавателя к 6 массовым частям технического I 2 добавить 2 ч СаО и 1 ч KI, смесь растереть в ступке. На дно стакана помещают техническийиод, подлежащий отчистке. Стакан накрывают круглодонной колбой, заполненной холодной водой, ставят на песочную баню и включают нагрев.

Лабораторная работа №5

Основными методами очистки твердых веществ в лаборатории органического синтеза являются перекристаллизация и возгонка. К методам выделения органических веществ из реакционной массы относится кристаллизация, выпаривание, фильтрование, экстракция (экстрагирование).

КРИСТАЛЛИЗАЦИЯ

КРИСТАЛЛИЗАЦИЯ – процесс выделения твёрдой фазы в виде кристаллов из растворов, расплавов и паров.

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пересыщения пара, когда практически мгновенно возникает множество мелких кристалликов - центров кристаллизации . Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершенных атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). Кристаллизацию растворов удобно проводить в кристаллизаторах, поддерживая в них необходимую температуру (рис. 69).

Рисунок 69. – Кристаллизаторы.

Сильно загрязненные вещества, обычно, плохо кристаллизуются. Примеси, как правило, замедляют процесс кристаллизации, вероятно в виду их адсорбции на поверхности центров кристаллизации, и способствуют образованию нечистых и плохо сформированных кристаллов, так как мешают быстрой и правильной ориентации молекул вещества на поверхности кристалла. Так, сахароза, содержащая 30% примесей, кристаллизуется в 2 раза медленнее, чем сахароза с 28% примесей, и в 30 раз медленнее, чем чистая сахароза.

В некоторых случаях процесс кристаллизации протекает крайне медленно. Если кристаллизация при охлаждении сразу не наступает, необходимо оставить раствор стоять, по меньшей мере, на сутки, а иногда и на значительно более долгое время.

Следует также иметь в виду, что образование крупных, хорошо сформированных кристаллов, наблюдающееся при медленном охлаждении раствора, нередко может приводить к получению менее чистого продукта, так как крупные кристаллы обычно содержат включения маточного раствора. Относительно мелкие кристаллы, получающиеся при быстром охлаждении и перемешивании раствора, гораздо чище и более однородны по форме. Впрочем, если кристаллы слишком мелки, на их поверхности возможна адсорбция примесей из раствора, что также нежелательно.

Насыщенный раствор - раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.

Пересыщенный раствор - раствор, содержащий при данных условиях больше растворённого вещества, чем в насыщенном растворе, избыток вещества легко выпадает в осадок. Обычно пересыщенный раствор получают охлаждением раствора, насыщенного при более высокой температуре (пересыщение).

Скорость кристаллизации

Скорость кристаллизации определяют преимущественно три фактора:

1. изменение растворимости вещества, т. е. степени насыщенности раствора, в связи с изменением температуры;

2. скорость возникновения центров кристаллизации;

3. скорость роста кристаллов.

Наиболее быстро кристаллизация происходит при температуре на 20–50 о С ниже температуры плавления. Вблизи же температуры плавления вещества происходит резкое падение скорости кристаллизации, что объясняется увеличением влияния выделяющейся теплоты кристаллизации.

Слишком сильное охлаждение часто препятствует кристаллизации. Это в большей степени объясняется увеличением вязкости, которая тормозит правильную ориентацию молекул вещества друг относительно друга и относительно уже имеющейся поверхности кристалла.

Стимуляция кристаллизации

Часто, кристаллическое вещество не выделяется из пересыщенного раствора или же расплавленное вещество не кристаллизуется даже при охлаждении. В таком случае, обычно, применяются несколько приемов, стимулирующих кристаллизацию.

Внесение затравки («заражение»)

Центром кристаллизации могут выступать кристаллы того же вещества, которые добавляют из вне в качестве затравки. Таким образом, в растворе или расплаве искусственно создаются центры кристаллизации, обладающие необходимой кристаллической формой.

Температурная стимуляция

Часто если быстрой кристаллизации при охлаждении не происходит можно оставить раствор с исследуемым веществом на сутки или более продолжительное время при температуре примерно на 100 о С ниже ожидаемой температуры плавления, после чего выдержать его при температуре на 50 и затем на 30 о С ниже температуры плавления, чтобы образовавшиеся активные центры дали нужный рост кристаллов.

Трение стеклянной палочкой

Широко распространенный и весьма эффективный прием стимулирования кристаллизации заключается в трении стеклянной палочкой о внутренние стенки сосуда. При этом образуется мелкая стеклянная пыль, отдельные частички которой могут случайно оказаться подходящими центрами кристаллизации. Такую же роль могут играть и отдельные точки на образовавшейся в результате трения шероховатой поверхности стекла.

Значение пылинок, всегда находящихся в воздухе лаборатории, очень важно для процесса кристаллизации. Нередко, если кристаллизации не происходит даже при стимуляции, раствор, расплав исследуемого вещества или масло, в виде которого оно выделилось, оставляют в открытом сосуде (колба, стакан, чашка Петри) на долгое время, рассчитывая на возможное попадание на поверхность жидкости таких пылинок, которые вызовут кристаллизацию.

Кристаллизация всегда начинается от стенок сосуда и от поверхности жидкости к центру, а не наоборот. Неверно считать причиной этого явления охлаждение внешних слоев жидкости, так как подобным же образом происходит и кристаллизация вещества из пересыщенных растворов, не подвергаемых охлаждению.

Кристаллизация всегда начинается на твердых поверхностях или на границе раздела фаз. Возможно, и в этих случаях решающее значение имеют определенные твердые частички, плотно приставшие к стенкам или собирающиеся обычно на поверхности жидкости.

Часто можно наблюдать, что повторная кристаллизация в одном и том же сосуде начинается в тех же точка, что и первый раз. Это свидетельствует о наличии центров кристаллизации, не изменяющихся при полном растворении или расплавлении вещества.

И все же часто причиной невозможности кристаллизации является низкая концентрация вещества в растворе, (ненасыщенный раствор). В таком случае часть растворителя необходимо удалить, например, путем выпаривания.

Выпаривание

Выпаривание – процесс концентрирование растворов путём частичного испарения растворителя при
кипении

Выпаривание чаще всего производится при повышенной температуре, иногда при кипении, и/или под вакуумом. На испарение растворителя расходуется тепловая энергия, которую следует подводить извне. При выпаривании повышаются концентрация, плотность и вязкость раствора, а также температура его кипения. При пересыщении раствора растворённое вещество выпадает в осадок.

Наиболее часто в органическом синтезе для выпаривания используется роторный испаритель (рис. 70).

Роторный вакуум-испаритель - прибор, предназначенный для автоматизации перегонки жидкостей при уменьшенном давлении.

Принцип действия

Перегонная колба (А) на шлифе вращается с помощью электромотора (С), что позволяет увеличить поверхность жидкости, которая в виде тонкой плёнки смачивает стенки колбы, и тем самым уменьшить время перегонки и мощность нагрева. Нагрев бани осуществляется термонагревательными элементами, которые передают тепло воде (водяная баня) либо высококипящему маслу (масляная баня), если требуется нагрев выше 100 0 С (B). Через трубку (H) прибор подключают к водоструйному или масляному насосу. Пары растворителя конденсируются в холодильнике (F) и стекают в колбу-приёмник (G).

В принципе, возможно применение любого холодильника с подходящим по диаметру шлифом, однако в виду того, что при отгонке летучих растворителей часть паров будет "проскакивать" холодильник и уходить в атмосферу, можно регенерировать лишь половину растворителя или меньше. В связи с этим наиболее рациональным является использование, по возможности, наиболее эффективных холодильников с двойной рубашкой и спиралью.

Иногда, чтобы не потерять большое количество очень летучего растворителя, или предотвратить бурное вскипание и выброс раствора в холодильник (после чего ротор придётся чистить изнутри) имеет смысл производить перегонку при неполном вакууме, слегка приоткрывая кран-задвижку (H), или вовсе не использовать вакуум.

Рисунок 70. Роторный испаритель

Современные роторные испарители имеют микропроцесорный контроль температуры и скорости вращения, некоторые снабжены электроприводом для подъёма-опускания водяной бани.

Роторные испарители подходят для непрерывной и периодической дистилляции при нормальном давлении и в вакууме. Основным преимуществом роторных испарителей является безопасная тепловая обработка чувствительных к температуре сред. Ограничения в использовании роторных испарителей возникают в случае относительно длительного времени выдержки и образовании вязкого конечного продукта. Роторный испаритель позволяет обработать субстанцию с вязкостью до 5000 сПз (мПа). Роторные испарители могут использоваться для упаривания суспензий, проведения кристаллизации и сушки порошков и гранулатов. Также возможно проведение некоторых химических реакций.

Водные растворы можно выпаривать, нагревая их в круглодонной, плоскодонной колбе или фарфоровой чашке на электрической плитке. Небольшие количества органических растворителей (кроме легковоспламеняющихся жидкостей) допускается отгонять на электрических плитках (за исключением плиток с открытой спиралью) (рис 71).

Рисунок 71. – Варианты установок для упаривания водных растворов и отгонки органических растворителей

Наиболее часто небольшие количества органических растворителей отгоняют при пониженном давлении. Однако при этом происходит утечка испаряющихся паров растворителя с водой водоструйного насоса (рис).


Часто, при работе с малыми количествами веществ, для испарения небольшого количества растворителя используют чашки Петри.

Чашка Петри (англ. Petri dish, нем. Petrischale ) - лабораторная посуда, имеет форму невысокого плоского цилиндра, закрывается крышкой подобной же формы, но несколько большего диаметра. Применяется в биологии и химии.

Посуда, изобретённая в 1877 году, названа в честь изобретателя, немецкого бактериолога Юлиуса Рихарда Петри, ассистента Роберта Коха.

Чашка Петри обычно изготавливается из прозрачного стекла или пластмассы (прозрачный полистирол) и может иметь самые различные размеры. Наиболее часто используемые варианты имеют диаметр порядка 50 - 100 мм и высоту около 15 мм.

Кроме того, чашка Петри зачастую используется для хранения малых количеств веществ

Фильтрование

Фильтрование - процесс отделения твердой фазы смеси, находящихся в осадке, от жидкой фазы (маточного раствора) через пористую перегородку – фильтр

В качестве фильтра обычно используют фильтровальную бумагу, которая может быть различной пористости. Фильтрами могут служить также различные ткани, пористое стекло, асбест, обычная и стеклянная вата и др. При этом необходимо помнить, что фильтрующие материалы не должны взаимодействовать ни с растворителем, ни с отделяемым осадком.

Фильтрование можно проводить различными способами. Это определяется как характером растворителя, так и свойствами отделяемого вещества при фильтровании. Обычно пользуются двумя способами фильтрования: при атмосферном и пониженном давлении.

Реактивы, выпускаемые промышленностью или получаемые в лаборатории, могут содержать нерастворимые и растворимые примеси.

По степени чистоты, т.е. по содержанию основного вещества и допустимых примесей, реактивы имеют соответствующую классификацию (табл. 14). Она указывается на этикетках товарных реактивов.

Таблица 14. Классификация реактивов по степени чистоты

Три первые марки охватывают все реактивы общего назначения. Препараты более высокой чистоты применяются лишь для специальных работ, где иногда даже миллионные доли процента являются недопустимыми. Ими пользуются в промышленности полупроводниковых материалов, радиоэлектронике, квантовой электронике.

При работе с реактивами следует всегда помнить, что снижение примесей даже на один порядок, особенно, начиная с 10 -3 % , приводит к резкому возрастанию цены вещества. Поэтому нельзя использовать для малоответственных работ препараты высокой чистоты. С другой стороны, если требуется, чистоту реактива повышают специальными методами очистки, а контролируют чистоту соединения качественным и количественным анализом или определением его физических характеристик: температуры плавления, температуры кипения, относительной плотности, показателя преломления.

В лабораторной практике чаще всего применяют следующие методы очистки реактивов: перекристаллизацию из раствора и возгонку для твердых веществ, перегонку или ректификацию для жидкостей и сорбцию примесей в случае газов.

Кроме того, для очистки жидкостей и растворов используют осаждение или соосаждение примесей (с помощью химических реагентов или электролизом), а также экстракцию и сорбцию. Металлы очищают перекристаллизацией из расплава, в частности, зонной плавкой. Рассмотрим некоторые из перечисленных методов.

Зонная плавка. Метод очистки металла зонной плавкой, как и очистка кристаллизацией из расплава основан на большей растворимости примесей в расплаве, чем в твердой фазе М. При зонной плавке стержень очищаемого материала медленно продвигается сквозь узкую зону нагрева, расплавляясь только в ней. При этом смеси, накапливаясь в расплаве, перемещаются в конец стержня. Плавку повторяют несколько раз и затем конец стержня, где накопились примеси, обрубают.



Экстракция – это метод извлечения вещества из одной жидкой фазы в другую через границу раздела этих фаз вследствие большей растворимости извлекаемого (экстрагируемого) вещества во второй жидкости. Например, можно очистить воду от иода, извлекая его бензолом. Чтобы создать большую площадь поверхности экстрагирования и таким образом повысить скорость процесса, жидкости интенсивно перемешивают до образования эмульсии. Затем, после отстаивания до практически полного расслоения фаз, их разделяют (в делительной воронке).

Сорбция (от лат. слова «sorbeo», что значит «поглощаю») – это явление извлечения, например, газа из газовой смеси (или растворенного компонента из жидкой фазы) веществом в твердом агрегатном состоянии . Такое вещество называется сорбентом . Сорбция происходит благодаря образованию связей между атомами поглощаемого соединения и поверхностными атомами сорбента. В зависимости от типа, силы и числа этих связей, частицы (молекулы, атомы или ионы) разных веществ, удерживаются на поверхности сорбента с разной прочностью. Поэтому поглощаются им в неодинаковой степени, что позволяет разделять их смеси.

Например, можно очистить воздух от влаги и углекислого газа с помощью хлорида кальция, который практически не поглощает азот и кислород, но в значительном количестве сорбирует молекулы воды и углекислого газа.

Среди разных видов поглощения особо выделяют ионообменную сорбцию , основанную на обратимом стехиометрическом обмене ионов раствора на ионы сорбента, который в этом случае называется ионитом .

Если происходит обмен катионами, то ионит называется катионитом , если анионами – то анионитом . Когда катионами ионита выступают ионы водорода, то говорят, что катионит находится в Н-форме и является, по существу, малорастворимой полимерной многоосновной кислотой. Аналогично анионит в ОН-форме можно рассматривать как полимерное многокислотное основание.

Если через колонку с гранулами катионита в Н-форме пропускать раствор хлорида натрия, то из колонки будет выходить хлороводородная кислота соответствующей концентрации. А после прохождения образовавшейся кислоты через колонку с анионитом в ОН-форме, получается чистая вода. На этом основан метод тонкой очистки воды с помощью ионитов от растворимых в воде электролитов.

Метод очистки перекристаллизацией заключается в приготовлении насыщенного раствора данного вещества при одной температуре и выделении его кристаллов при другой, т.е. он основан на зависимости величины s от температуры. Графически эта зависимость изображена на рисунке 7.

По кривой растворимости, например, нитрата калия, находим, что из его раствора, насыщенного при 45 0 С, после охлаждения до 0 0 С выпадет в осадок около 60 г нитрата калия (в расчете на 100 г воды). Причем, если исходная соль содержала растворимые в воде примеси, то при указанном понижении температуры насыщение относительно их не наступает, поэтому они не выпадут вместе с кристаллами очищаемой соли, хотя небольшие количества примесей «захватываются» ими.

Однако повторной перекристаллизацией можно получить практически чистое вещество. Чтобы уменьшить количество примесей, сорбированных поверхностью кристаллов, промывают их после отделения от маточного раствора. (Маточным называется раствор, из которого образовался осадок.)

Метод очистки возгонкой (сублимацией) заключается в переводе соединения из твердого состояния в газообразное (без стадии плавления), и последующей кристаллизации образовавшихся паров на охлаждаемой поверхности. Этим методом можно очистить легколетучие вещества (иод, бензойную кислоту и др.) от нелетучих примесей. Для понимания физико-химической сущности возгонки рассмотрим фазовую диаграмму состояния , например, (рис. 13).

Каждая точка диаграммы отвечает определенному состоянию системы при данных р и Т, причем I – область твердого состояния вещества, II – жидкого, III – газообразного. Точка A, в которой сходятся линии, разделяющие фазы, называется тройной , т.к. в ней находятся в равновесии все 3 фазы. Для эта точка соответствует давлению насыщенного пара 90 мм рт.ст. и температуре 116 0 С.

Если перемещаться по прямой 1–4, т.е. выше точки A, то в точке 2 иод будет плавиться, а в точке 3 – кипеть.

Если же взять состояние системы, отвечающее точке 5 (т.е. ниже точки A), в которой твердая фаза имеет температуру T’, а давление насыщенного пара над нею равно p’, и нагревать твердый иод при постоянном р, то изменение состояния системы будет отражаться прямой 5–7. Причем в точке 6, когда давление насыщенных паров будет равно внешнему р, начнется процесс интенсивной возгонки . (Отрезок 6–7, как и 3–4, соответствует нагреванию паров в отсутствие других его фаз.)

Однако это все относится к равновесным состояниям. А в неравновесных условиях возгонка иода возможна, если давление его насыщенного пара будет хоть и меньше внешнего давления, но достаточно велико. При этом на начальном этапе нагревания твердого иода ниже , чем в точке A, и будет оставаться таким, если процесс вести в открытом сосуде, т.к. парам обеспечен свободныйуход из системы, что собственно и является возгонкой в неравновесных условиях.

Если же нагревать иод, например, в пробирке, закрытой ватой, то его пары, как более тяжелые, будут вытеснять воздух из сосуда (сквозь вату). Поэтому будет расти, и когда оно станет выше 90 мм рт.ст. (при T, обеспечивающей жидкое состояние ), он расплавится. Так получают жидкий иод .

Очистка вещества перегонкой или дистилляцией основана на превращении жидкости в пар с последующей его конденсацией. Этим методом отделяют жидкость от растворенных в ней нелетучих твердых примесей. Так, например, с помощью перегонки (дистилляции) очищают природную воду от содержащихся в ней солей. В результате получается т.н. дистиллированная вода.

Очистка газов . Полученные в реакциях газы обычно загрязнены парами воды и примесями других летучих веществ. Очищают газ, пропуская его через соединения, поглощающие эти примеси. В качестве поглотителя используют жидкие или твердые вещества, причем жидкие помещают в склянку Дрекселя, а твердые (в виде гранул) – в хлоркальциевую трубку или склянку Тищенко (рис. 14).

Выбор способа очистки газа зависит от физических и химических свойств не только самого газа, но и примесей. Например, углекислый газ, полученный в аппарате Кипа, содержит небольшое количество хлороводородной кислоты и пары воды, выделившиеся из раствора HCl. Этот газ пропускают сначала через промывалку с водой (для поглощения HCl), а затем через хлоркальциевую трубку (при этом сорбируются пары воды). И т.о. углекислый газ получается практически чистым.

Закрыть отверстие колбы Вюрца пробкой с термометром (2), присоединить холодильник (3), аллонж (4), последний опустить в приемник (5). На плите (6) через асбестовую сетку нагреть раствор в колбе до кипения. При какой Т он закипит? Изменяется ли температура кипения в процессе упаривания жидкости?

Нагревание закончить, когда в приемнике соберется 100–120 мл жидкости. Измерить ее плотность. Есть ли в ней сульфат меди? Как это установить?

2. Очистка иода возгонкой . В стакан для возгонки поместите 0,3 г кристаллического иода и 0,1 г иодида калия (для удаления примесей Cl 2 и Br 2 , содержащихся в иоде), и перемешайте стеклянной палочкой. Круглодонной колбой с холодной водой накройте стакан и осторожно нагрейте его через асбестовую сетку (табл. 6). После прекращения выделения паров (какого цвета?) отделите кристаллы от колбы, взвесьте их и определите процент выхода иода.

3. Очистка пятиводного сульфата меди перекристаллизацией . Рассчитать количество воды и , нужное для приготовления раствора, насыщенного при 60 0 С, чтобы при последующем его охлаждении до 0 0 С выделилось 7 г кристаллогидрата, используя следующие данные:

T 0 C
S, г/100 г H 2 O 12.9 14.8 17.2 20.0 22.8 25.1 28.1 34.9 42.4

Обычно пентагидрат содержит примеси хлорида калия, а также песок и кусочки угля. Поэтому для очистки отвесьте исходной соли на 10% больше рассчитанной массы. Отмерьте цилиндром нужный объем воды, вылейте в стакан на 50 мл, вскипятите воду и растворите в ней при перемешивании навеску очищаемой соли.

Убедитесь, что хлорид-ионы есть в приготовленном растворе. Для этого к 3 каплям его добавьте каплю раствора AgNO 3 и две капли азотной кислоты. Что наблюдается? Почему? Затем нагретый до кипения раствор сульфата меди отфильтруйте через складчатый фильтр, приготовленный заранее.

Помешивая фильтрат стеклянной палочкой, охладите его до комнатной температуры, а потом до 0 0 С в кристаллизаторе с водой и льдом. Выпавшие кристаллы отделите от маточного раствора фильтрованием и промойте их (зачем?) 5‑10 мл холодной дистиллированной воды. Раствор очищенной соли, маточный раствор, и промывные воды испытайте на хлорид-ионы и сделайте выводы.

Затем снимите кристаллы соли с воронки и отжимайте их между листами фильтровальной бумаги до тех пор, пока они не перестанут прилипать к сухой стеклянной палочке. Взвесьте на технохимических весах полученную соль. Оцените массу соли в процентах по отношению к исходной навеске. Чем объясняется сравнительно низкий выход продукта, очищенного методом перекристаллизации?

4. Очистка углекислого газа . Колбу Вюрца наполнить на 1/5 объема кусочками мрамора, присоединить к ней газоотводную трубку, добавить 30 мл 20%-го раствора HCl и сразу закрыть колбу пробкой. Что наблюдается? Чем может быть загрязнен получающийся при этом углекислый газ?

Пропускать выделяющийся газ в течение 10–15 мин через склянку Дрекселя с дистиллированной водой и последовательно с ней соединенную хлоркальциевую трубку, наполненную обезвоженным сульфатом меди. (Как изменяется его цвет? Почему?). Испытать содержимое промывной склянки на присутствие ионов Cl – и H + , используя раствор AgNO 3 и индикаторную бумагу соответственно. Сделать выводы.

Методы очистки веществ различны и зависят от свойств веществ и их применения. В химической практике наиболее распространены следующие методы: фильтрование, перекристаллизация, дистилляция, возгонка, высаливание. Очистка газов обычно осуществляется поглощением газообразных примесей веществами, реагирующими с этими примесями. Чистые вещества обладают присущими им характерными физическими и химическими свойствами. Следовательно, степень чистоты вещества можно проверить как физическими, так и химическими методами. В первом случае определяют плотность, температуры плавления, кипения, замерзания и др. Химические методы проверки основаны на химических реакциях и представляют собой методы качественного анализа.

В соответствии со стандартом (ГОСТ) по степени чистоты реактивы делятся на:

а) химически чистые (х.ч.),

б) чистые для анализа (ч.д.а.),

в) чистые (ч.) и другие.

Для лабораторных работ по неорганической химии пригодны вещества с маркировкой х.ч. и ч.д.а.

      Перекристаллизация
Очистка твердых веществ методом перекристаллизации основана на различной растворимости вещества в данном растворителе в зависимости от температуры. Под растворимостью понимают содержание растворенного вещества в насыщенном растворе. Растворимость обычно выражается в . Зависимость растворимости веществ от температуры выражается кривыми растворимости. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно последних не будет достигнуто при понижении температуры, поэтому они не выпадут в осадок вместе с кристаллами очищаемой соли. Процесс перекристаллизации состоит из нескольких этапов: приготовления раствора, фильтрования горячего раствора, охлаждения, кристаллизации, отделении кристаллов от маточного раствора. Очистка твердых веществ перекристаллизацией основана на различной растворимости вещества в данном растворителе в зависимости от температуры. Под растворимостью понимают содержание растворенного вещества в насыщенном растворе. Растворимость обычно выражается в граммах растворенного вещества на 100 граммов растворителя, иногда на 100 г раствора. Зависимость растворимости веществ от температуры выражается кривыми растворимости. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно последних не будет достигнуто при понижении температуры, поэтому они не выпадут в осадок вместе с кристаллами очищаемой соли. Процесс перекристаллизации состоит из нескольких этапов: приготовления раствора, фильтрования горячего раствора, охлаждения, кристаллизации, отделения кристаллов от маточного раствора.
Чтобы перекристаллизовать вещество, его растворяют в дистиллированной воде или в подходящем органическом растворителе при определенной температуре. В горячий растворитель небольшими порциями вводят кристаллическое вещество до тех пор, пока оно перестанет растворяться, т.е. образуется насыщенный при данной температуре раствор. Горячий раствор отфильтровывают на воронке для горячего фильтрования. Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой со льдом или с охлаждающей смесью. При охлаждении из отфильтрованного насыщенного раствора выпадают мелкие кристаллы, так как раствор при более низкой температуре становится пересыщенным. Выпавшие кристаллы отфильтровывают на воронке Бюхнера, затем переносят их на сложенный вдвое лист фильтровальной бумаги. Стеклянной палочкой или шпателем распределяют кристаллы ровным слоем, накрывают другим листом фильтровальной бумаги и отжимают кристаллы между листами фильтровальной бумаги. Операцию повторят несколько раз. Затем кристаллы переносят в бюкс. До постоянной массы вещество доводят в электрическом сушильном шкафу при температуре 100-105 . Температуру в шкафу до этого предела следует повышать постепенно. Для получения очень чистого вещества перекристаллизацию повторяют несколько раз.
      Возгонка (сублимация)
Процесс непосредственного превращения твердого вещества в пар без образования жидкости называют возгонкой. От перекристаллизации возгонка отличается более высоким выходом чистого продукта и происходит при более низкой температуре, чем температура плавления вещества. Ее применяют тогда, когда нельзя очистить вещество перекристаллизацией, так как оно разлагается при температуре плавления. Возгоняемое вещество нагревают. Достигнув температуры возгонки, твердое вещество без плавления переходит в пар, который конденсируется в кристаллы на поверхности охлажденных предметов. С помощью возгонки можно получить в чистом виде, например, бензойную кислоту, нафталин, хлорид аммония, йод и некоторые другие вещества, при условии, что примеси не возгоняются. Однако этот метод очистки веществ ограничен, так как немногие твердые вещества способны сублимироваться.
      Перегонка (дистилляция)
Перегонка – это процесс отделения жидкости от растворенных в ней твердых веществ или менее летучих жидкостей. Перегонка основана на превращении жидкости в пар с последующей конденсацией пара в жидкость. По сравнению с перекристаллизацией перегонка при меньших затратах времени дает, как правило, больший выход чистого продукта. Перегонкой пользуются тогда, когда перегоняемые вещества при нагревании не претерпевают каких-либо изменений или когда очищаемые жидкости имеют определенную разницу температур, но не слишком высокую температуру кипения. Различают три способа перегонки жидкостей:
    а) при атмосферном давлении (простая перегонка),
    б) при уменьшенном давлении (вакуум-перегонка),
    в) перегонка с водяным паром.
Простая перегонка применяется тогда, когда надо отделить целевой продукт от практически нелетучих примесей. Например, очистка воды от нелетучих солей. Для этого собирают традиционную установку, состоящую из перегонной колбы (колбы Вюрца), прямого холодильника и приемника. Перегонную колбу заполняют перегоняемой жидкостью не более чем на? ее объема, но и не менее чем на? объема колбы. Когда весь прибор собран, тщательно проверяют, хорошо ли подобраны пробки, правильно ли установлен термометр. Включают воду для охлаждения холодильника. Подставляют приемник для сбора перегоняемой жидкости и начинают нагревать раствор до кипения. Колбу нагревают на водяной (песчаной или масляной) бане, реже на пламени горелки через асбестовую сетку. Температуру паров отгоняемого вещества измеряют термометром, установленным на 1 см ниже отводной трубки колбы Вюрца. Для предотвращения внезапного вскипания перегоняемой жидкости и попадания ее в холодильник в колбу кладут длинные капиляры, запаянные с одного конца или небольшие кусочки фарфора (кипелки). Перегонку при низком давлении (вакуум-перегонку) применяют, если жидкость, подлежащая перегонке в обычных условиях, не выдерживает нагревания до температуры ее кипения. Установка для такой перегонки более сложная. Для отгонки веществ, нерастворимых в воде, используют перегонку с водяным паром.
      Высаливание

Высаливание заключается в том, что под действием значительных количеств насыщенного раствора сильного электролита высокомолекулярные природные соединения (белки, камеди, слизи, пектины) выпадают из вытяжек в осадок. Это происходит потому, что при добавлении в вытяжку раствора электролита образующиеся ионы электролита гидратируются, отнимая воду у молекул биополимера. Исчезает защитный гидратный слой молекул биополимера. Наблюдаются слипание частиц и осаждение биополимера. Высаливание довольно широко применяется для очистки белковых лекарственных препаратов, например пепсина. Термин «высаливание» получил название от процесса осаждения белков при добавлении к их растворам хлорида натрия.

Необходимо иметь в виду, что различные соли обладают разным высаливающим свойством, которое объясняется способностью анионов и катионов к гидратации. Высаливающая способность электролитов зависит в основном от анионов. Анионы по своей высаливающей силе располагаются в следующий лиотропный ряд >>>>>.

Для катионов имеется такой же лиотропный ряд: > > > > .

Наибольшей высаливающей активностью обладает однако обычно для этой цели используют хлорид натрия, который дешевле.

    Хлорид натрия

Хлорид натрия - химическое соединение NaCl, натриевая соль соляной кислоты, хлористый натрий.

Хлорид натрия известен в быту под названием поваренной соли, основным компонентом которой он является. Хлорид натрия в значительном количестве содержится в морской воде, создавая её солёный вкус. Встречается в природе в виде минерала галита (каменная соль).

Чистый хлорид натрия имеет вид бесцветных кристаллов. Но с различными примесями его цвет может принимать: голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в г на 100 г воды) равен 35,9 при 21 °C и 38,1 при 80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей - хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена.

      Хлорид натрия по названием «Поваренная соль»

Поваренная соль (хлорид натрия, NaCl; употребляются также названия «хлористый натрий», «столовая соль», «каменная соль», «пищевая соль» или просто «соль») - пищевой продукт. В молотом виде представляет собой мелкие кристаллы белого цвета. Поваренная соль природного происхождения практически всегда имеет примеси других минеральных солей, которые могут придавать ей оттенки разных цветов (как правило, серого). Производится в разных видах: очищенная и неочищенная (каменная соль), крупного и мелкого помола, чистая и йодированная, морская, и т. д. Cоль добывается промышленной очисткой добытого из залежей галита (каменной соли), располагающихся на месте высохших морей.

      В природе хлорид натрия встречается в виде минерала галита

Галит (греч. ??? - соль) - каменная соль, минерал подкласса хлоридов, кристаллическая форма хлорида натрия (NaCl). Сырьё, из которого изготавливается поваренная соль. Галиты можно найти в пластах осадочных пород среди прочих минералов - продуктов испарения воды - в пересыхающих лиманах, озёрах, морях. Осадочный слой имеет толщину до 350 метров и простирается на огромные территории. Например, в Америке и Канаде подземные залежи соли простираются от Аппалачских гор западнее Нью-Йорка через Онтарио до бассейна Мичигана.

    Очистка хлорида натрия методом высаливания.

При перекристаллизации веществ, растворимость которых мало изменяется с изменением температуры, применяют метод высаливания. К растворам таких веществ добавляют вещества, понижающие их растворимость.

    Экспериментальная часть
Приборы и реактивы
Приборы: технохимические весы, ступка, стакан, плитка, складчатый и обыкновенный фильтры, мензурка, стеклянная палочка, воронка, чашка Петри.
Реактивы: насыщенный раствор хлорида натрия, поваренная соль, дистиллированная вода, концентрированная соляна кислота (?= 1, 19 ) .
    Методика очистки
Приготовить насыщенный раствор хлорида натрия. Отвесить на технохимических весах 20 г поваренной соли, растереть ее в ступке и высыпать в стакан. Добавить 50 мл дистиллированной воды, поставить стакан на плитку. Нагреть раствор до кипения и профильтровать его через складчатый фильтр в чистый стакан. Отмерить мензуркой 25 мл концентрированной соляной кислоты?= 1, 19 . Стакан с теплым насыщенным раствором поваренной соли перенести в вытяжной шкаф и медленно, небольшими порциями добавлять в него соляную кислоту при непрерывном перемешивании стеклянной палочкой. После охлаждения раствора до комнатной температуры отфильтровать выпавшие кристаллы с помощью воронки и обычного фильтра, перенести их в чашку Петри и высушить.
    Проведение эксперимента
Первая параллель.
Отвесила на технохимических весах 20 г поваренной соли, пересыпала в стакан. Туда добавила 50 мл дистиллированной воды. Затем поставила стакан на плитку и довела содержимое до кипения. Соль отслоилась. Отфильтровала раствор и поместила его в вытяжной шкаф. Там, медленно, при перемешивании начала добавлять концентрированную соляную кислоту. При этом, растворимость электролита уменьшается при введении в раствор другого электролита с одноименным ионом. При введении ионов хлора Cl? в насыщенный раствор хлорида натрия NaCl(к) > + Cl? равновесие смещается влево, в результате чего выпадают кристаллы соли, не содержащие примесей.
Подождала, пока раствор остынет. Остывший раствор отфильтровала. Полученные кристаллы поместила в чашку Петри и оставила сушиться.
После того, как кристаллы высохли, я их взвесила: m=5,200 г.
и т.д.................

Применяемые для работы в лаборатории вещества должны быть достаточно чистыми, ибо истинные свойства индивидуальных веществ проявляются лишь тогда, когда они очищены от примесей, сопутствующих им в природных материалах, а также от загрязнений, попадающих в них в процессе получения.

Каждое чистое вещество имеет определенные физические свойства: цвет, температуру плавления, температуру кипения, плотность и др., поэтому чистоту вещества можно определить, изучая эти свойства. Наиболее подходящими для оценки чистоты вещества являются те свойства, которые могут быть оценены количественно. Полученные данные сравнивают с данными таблиц для испытуемого вещества. На практике чаще всего определяют температуру плавления, температуру кипения и плотность. Примеси большей частью понижают температуру плавления, и последняя не остается от начала плавления до полного расплавления вещества, как в случае чистого вещества. Температура кипения жидкости при наличии примесей повышается и не остается при кипении постоянным.

Понятие о чистоте вещества имеет принципиальное значение в современной неорганической химии. Абсолютно чистые вещества в природе не существуют. Поэтому нет абсолютно нерастворимых веществ и, следовательно, любое вещество загрязнено примесями. Примеси коренным образом влияют на свойства вещества.

Проблема получения чистых веществ имеет три основных аспекта. 1. Свойства вещества можно определять, только получив его в нужной степени чистоты. Сравнение одноименных свойств различных веществ допустимо только при их одинаковой чистоте. 2. Выбор подходящих методов, позволяющих очистить вещество до необходимой чистоты. 3. Обеспечение достаточно чувствительных и селективных методов контроля чистоты. (см. Я.А.Угай Неорганическая химия,1989, с.46-47).

По мере развития науки и техники возникает проблема получения все более чистых веществ. Успехи химии за последние десятилетия исключительно велики и не менее значителен технический прогресс в области чистых веществ. За последние 40-50 лет изменилось само понятие о чистом веществе (в частности, о “химически чистом”) и возросли требования к реактивам лабораторного назначения. Производство чистых веществ - это снижение содержания примесей с 0,1-1% до сотых долей процента. Дальнейшая очистка является значительно более сложной и трудоемкой задачей. При работе с реактивами надо всегда помнить, что снижение содержания примесей даже на один порядок приводит к резкому возрастанию цены реактива. Поэтому не следует использовать для малоответственных работ препараты высокой чистоты.

По существующему положению для реактивов установлены квалификации “чистый”(ч.), “чистый для анализа” (ч.д.а.), “химический чистый” (х.ч.) и “ особо чистый” (ос.ч.), последняя, в свою очередь, делится на несколько марок. Реактивы квалификации “чистый” могут с успехом применяться в разнообразных лабораторных работах как учебного, так и производственного характера. Реактивы “ чистые для анализа”, как показывает само название, предназначены для аналитических работ, выполняемых с большой точностью. Содержание примесей в препаратах ч.д.а. настолько мало, что обычно не вносит заметных погрешностей в результаты анализа. Эти реактивы вполне могут быть использованы в научно-исследовательских работах. Наконец, реактивы квалификации “химически чистый” предназначены для ответственных научных исследований, они используются также в аналитических лабораториях в качестве веществ, по которым устанавливаются титры рабочих растворов. Эти три квалификации охватывают все реактивы общего назначения. Препараты более высокой очистки (“особой чистоты”) предназначены лишь для специальных целей, когда даже миллионные доли процента примеси являются совершенно недопустимыми. Такие особочистые вещества можно получить только с помощью специальных физико-химических методов очистки, основанных на различном распределении примесей в сосуществующих фазах. Методы сублимации, экстракции, хроматографии, направленной кристаллизации, зонной плавки удается получить вещества, которым присваивается квалификация “особо чистый”. Совершенно недопустимо и бессмысленно использовать дорогие вещества особой чистоты для выполнения рядовых аналитических и научных работ.