Рефераты Изложения История

§16.Магнитное поле. Закон взаимодействия токов

Рассмотрим провод, находящийся с магнитном поле и по которому течет ток (рис.12.6).

На каждый носитель тока (электрон), действует сила Лоренца . Определим силу, действующей на элемент провода длины dl

Последнее выражение носит название закона Ампера .

Модуль силы Ампера вычисляется по формуле:

.

Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.


Применим закон Ампера для вычисления силы взаимодействия двух находящихся в вакууме параллельных бесконечно длинных прямых токов (рис.12.7).

Расстояние между проводниками - b. Предположим, что проводник I 1 создает магнитное поле индукцией

По закону Ампера на проводник I 2 , со стороны магнитного поля, действует сила

, учитывая, что (sinα =1)

Следовательно, на единицу длины (dl =1) проводника I 2 , действует сила

.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца расположить по направлению электрического тока в проводнике, то отставленный большой палец укажет направление силы, действующей на проводник со стороны поля.

12.4. Циркуляция вектора магнитной индукции (закон полного тока). Следствие.

Магнитное поле в отличие от электростатического - непотенциальное поле: циркуляция вектора В магнитной индукции поля вдоль замкнутого контура не равна нулю и зависит от выбора контура. Такое поле в векторном анализе называют вихревым полем.


Рассмотрим в качестве примера магнитное поле замкнутого контура L произвольной формы, охватывающего бесконечно длинный прямолинейный проводник с током l , находящегося в вакууме (рис.12.8).

Линии магнитной индукции этого поля представляют собой окружности, плоскости которых перпендикулярны проводнику, а центры лежат на его оси (на рис. 12.8 эти линии изображены пунктиром). В точке А контура L вектор В магнитной индукции поля этого тока перпендикулярен радиусу-вектору .

Из рисунка видно, что

где - длина проекции вектора dl на направление вектора В . В то же время малый отрезок dl 1 касательной к окружности радиуса r можно заменить дугой окружности: , где dφ - центральный угол, под которым виден элемент dl контура L из центра окружности.

Тогда получаем, что циркуляция вектора индукции

Во всех точках линии вектор магнитной индукции равен

интегрируя вдоль всего замкнутого контура, и учитывая, что угол изменяется от нуля до 2π, найдем циркуляцию

Из формулы можно сделать следующие выводы:

1. Магнитное поле прямолинейного тока – вихревое поле и не консервативно, так как в нем циркуляция вектора В вдоль линии магнитной индукции не равна нулю;

2. циркуляция вектора В магнитной индукции замкнутого контура, охватывающего поле прямолинейного тока в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока.

Если магнитное поле образовано несколькими проводниками с током, то циркуляция результирующего поля

Данное выражение называется теоремой о полном токе .

Взаимодействие неподвижных зарядов описывается законом Кулона. Однако закон Кулона недостаточен для анализа взаимодействия движущихся зарядов. В опытах Ампера впервые появилось сообщение о том, что движущиеся заряды (токи) создают в пространстве некоторое поле, приводя к взаимодействию этих токов. Было установлено, что токи противоположных направлений отталкиваются, а одного направления – притягиваются. Поскольку оказалось, что поле тока, действует на магнитную стрелку точно так же, как и поле постоянного магнита, то это поле тока называли магнитным. Поле тока называется магнитным полем. Впоследствии было установлено, что у этих полей одна и та же природа.

Взаимодействие элементов тока .

Закон взаимодействия токов был открыт экспереметально задолго до создания теории относительности. Он значительно сложнее закона Кулона, описывающего взаимодействие неподвижных точечных зарядов. Этим и объясняется, что в его исследовании приняли участие многие ученые, а существенный вклад внесли Био (1774 — 1862), Савар (1791 — 1841), Ампер (1775 — 1836) и Лаплас(1749 — 1827).

В 1820 г. Х. К. Эрстед (1777 — 1851) открыл действие электрического тока на магнитную стрелку. В этом же году Био и Савар сформулировали закон для силы dF , с которой элемент тока I DL действует на магнитный полюс, удаленный на расстояние R от элемента тока:

DF I dL (16.1)

Где – угол, характеризующий взаимную ориентацию элемента тока и магнитного полюса. Функция вскоре была найдена экспериментально. Функция F (R ) Теоретически была выведена Лапласом в виде

F (R ) 1/r. (16.2)

Таким образом, усилиями Био, Савара и Лапласа была найдена формула, описывающая силу действия тока на магнитный полюс. В окончательном виде закон Био-Савара-Лапласа был сформулирован в 1826г. В виде формулы для силы, действующей на магнитный полюс, поскольку понятия напряженности поля еще не существовало.

В 1820г. Ампер открыл взаимодействие токов – притяжение или отталкивание параллельных токов. Им была доказана эквивалентность соленоида и постоянного магнита. Это позволило четко поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Ампер по своему образованию и склонностям был теоретиком и математиком. Тем не менее при исследовании взаимодействия элементов тока он выполнил очень скрупулезные экспериментальные работы, сконструировав ряд хитроумных устройств. Станок Ампера для демонстраци сил взаимодействия элементов тока. К сожалению, ни в публикациях, ни в его бумагах не осталось описания пути, каким он пришел к открытию. Однако формула Ампера для силы отличается от (16.2) наличием в правой части полного дифференциала. Это отличие несущественно при вычислении силы взаимодействия замкнутых токов, поскольку интеграл от полного дифференциала по замкнутому контуру равен нулю. Учитывая, что в экспериментах измеряется не сила взаимодействия элементов тока, а сила взаимодействия замкнутых токов, можно с полным основанием считать Ампера автором закона магнитного взаимодействия токов. Используемая в настоящее время формула для взаимодействия токов. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844г. Грассманом (1809 — 1877).

Если ввести 2 элемента тока и , то сила, с которой элемент тока действует на элемент тока будет определяться следующей формулой:

, (16.2)

Точно также можно записать:

(16.3)

Легко видеть:

Так как векторы и имеют между собой угол не равный 180°, то очевидно , т. е. III-ий закон Ньютона для элементов тока не выполняется. Но если вычислить силу, с которой ток , текущий по замкнутому контуру , действует на ток , текущий по замкнутому контуру :

, (16.4)

А затем вычислить , то , т. е. для токов Ш-ий закон Ньютона выполняется.

Описание взаимодействия токов с помощью магнитного поля.

В полной аналогии с электростатикой взаимодействие элементов тока представляется двумя стадиями: элемент тока в месте нахождения элемента создает магнитное поле, которое действует на элемент с силой . Поэтому элемент тока создает в точке нахождения элемента тока магнитное поле с индукцией

. (16.5)

На элемент , находящийся в точке с магнитной индукцией , действует сила

(16.6)

Соотношение (16.5), которое описывает порождение магнитного поля током, называется законом Био-Савара. Проинтегрировав (16.5) получим:

(16.7)

Где — радиус-вектор, проведенный от элемента тока к точке, в которой вычисляется индукция .

Для объемных токов закон Био-Савара имеет вид:

, (16.8)

Где j – плотность тока.

Из опыта следует, что для индукции магнитного поля справедлив принцип суперпозиции, т. е.

Пример.

Дан прямой бесконечный ток J. Вычислим индукцию магнитного поля в точке М на расстоянии r от него.

= .

= = . (16.10)

Формула (16.10) определяет индукцию магнитного поля, созданного прямым током.

Направление вектора магнитной индукции Приведено на рисунках.

Сила Ампера и сила Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Фактически эта сила

Или , где

Перейдем к силе, действующей на проводник с током длиной L . Тогда = и .

Но ток можно представить как , где — средняя скорость, n – концентрация частиц, S – площадь поперечного сечения. Тогда

, где . (16.12)

Так как , . Тогда , где — сила Лоренца, т. е. сила, действующая на заряд, движущийся в магнитном поле. В векторном виде

При сила Лоренца равна нулю, т. е. она не действует на заряд, который движется вдоль направления . При , т. е. сила Лоренца перпендикулярна скорости: .

Как известно из механики, если сила перпендикулярна скорости, то частицы движутся по окружности радиуса R, т. е. ,

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы B1 и B2 магнитной индукции параллельных токов I 1 и I 2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора B магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора B если при вращении буравчик перемещается в направлении тока Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Вектор магнитной индукции - это основная силовая характеристика магнитного поля (обозначается В).

Сила Лоренца - сила, действующая на одну заряженную частицу, равна

F Л = q υ B sin α.

Под действием силы Лоренца электрические заряды в магнитном поле движутся по криволинейным траекториям. Рассмотрим наиболее характерные случаи движения заряженных частиц в однородном магнитном поле.
а) Если заряженная частица попадает в магнитное поле под углом α = 0°, т.е.летит вдоль линий индукций поля, то F л = qvBsma = 0. Такая частица будет продолжать свое движение так, как если бы магнитного поля не было. Траектория частицы будет представлять собой прямую линию.
б)Частица с зарядом q попадает в магнитное поле так, что направление ее скорости v перпендикулярно индукции ^ В магнитного поля (рисунок - 3.34). В таком случае сила Лоренца обеспечивает центростремительное ускорение a = v 2 /R и частица движется по окружности радиусом R в плоскости, перпендикулярной линиям индукции магнитного поля.под действием силы Лоренца: F n = qvB sinα, учитывая, что α = 90°, запишем уравнение движения такой частицы: т v 2 /R= qvB. Здесь m - масса частицы, R – радиус окружности по которой движется частица. Откуда можно найти отношение e/m - называют удельным зарядом, который показывает заряд единицы массы частицы.
с) Если заряженная частица влетает со скоростью v 0 в магнитное поле под любым углом α , то данное движение можно представить ее как сложное и разложить ее на две составляющие по. Траектория движения представляет собой винтовую линию, ось которой совпадает с направлением В . Направление, в котором закручивается траектория, зависит от знака заряда частицы. Если заряд положителен, траектория закручивается против часовой стрелки. Траектория, по которой движется отрицательно заряженная частица, закручивается по часовой стрелке (предполагается, что мы смотрим на траекторию вдоль направления В ; частица при этом летит от нас.

Сила взаимодействия параллельных токов. Закон Ампера

Если взять два проводника с электрическими токами, то они будут притягиваться друг к другу, если токи в них направлены одинаково и отталкиваться, если токи текут в противоположных направлениях. Сила взаимодействия, которая приходится на единицу длины проводника, если они параллельны, может быть выражена как:

где $I_1{,I}_2$ -- токи, которые текут в проводниках, $b$- расстояние между проводниками, $в\ системе\ СИ\ {\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м}\ (Генри\ на\ метр)$ магнитная постоянная.

Закон взаимодействия токов был установлен в 1820 г. Ампером. На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную $2\cdot {10}^{-7}Н$ на каждый метр длины.

Закон Ампера для проводника произвольной формы

Если проводник с током находится в магнитном поле, то на каждый носитель тока действует сила равная:

где $\overrightarrow{v}$ -- скорость теплового движения зарядов, $\overrightarrow{u}$ -- скорость упорядоченного их движения. От заряда, это действие передается проводнику, по которому заряд перемещается. Значит, на проводник с током, который находится в магнитном, поле действует сила.

Выберем элемент проводника с током длины $dl$. Найдем силу ($\overrightarrow{dF}$) с которой действует магнитное поле на выделенный элемент. Усредним выражение (2) по носителям тока, которые находятся в элементе:

где $\overrightarrow{B}$ -- вектор магнитной индукции в точке размещения элемента $dl$. Если n -- концентрация носителей тока в единице объема, S -- площадь поперечного сечения провода в данном месте, тогда N -- число движущихся зарядов в элементе $dl$, равное:

Умножим (3) на количество носителей тока, получим:

Зная, что:

где $\overrightarrow{j}$- вектор плотности тока, а $Sdl=dV$, можно записать:

Из (7) следует, что сила, действующая на единицу объема проводника равна, плотность силы ($f$):

Формулу (7) можно записать в виде:

где $\overrightarrow{j}Sd\overrightarrow{l}=Id\overrightarrow{l}.$

Формула (9) закон Ампера для проводника произвольной формы. Модуль силы Ампера из (9) очевидно равен:

где $\alpha $ -- угол между векторами $\overrightarrow{dl}$ и $\overrightarrow{B}$. Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы $\overrightarrow{dl}$ и $\overrightarrow{B}$. Силу, которая действует на провод конечной длины можно найти из (10) путем интегрирования по длине проводника:

Силы, которые действуют на проводники с токами, называют силами Ампера.

Направление силы Ампера определяется правилом левой руки (Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 900 большой палец укажет направление силы Ампера).

Пример 1

Задание: Прямой проводник массой m длиной l подвешен горизонтально на двух легких нитях в однородном магнитном поле, вектор индукции этого поля имеет горизонтальное направление перпендикулярное проводнику (рис.1). Найдите силу тока и его направление, который разорвет одну из нитей подвеса. Индукция поля B. Каждая нить разорвется при нагрузке N.

Для решения задачи изобразим силы, которые действуют на проводник (рис.2). Будем считать проводник однородным, тогда можно считать, что точка приложения всех сил - середина проводника. Для того, чтобы сила Ампера была направлена вниз, ток должен течь в направлении из точки А в точку В (рис.2) (На рис.1 магнитное поле изображено, направленным на нас, перпендикулярно плоскости рисунка).

В таком случае уравнение равновесия сил, приложенных к проводнику с током запишем как:

\[\overrightarrow{mg}+\overrightarrow{F_A}+2\overrightarrow{N}=0\ \left(1.1\right),\]

где $\overrightarrow{mg}$ -- сила тяжести, $\overrightarrow{F_A}$ -- сила Ампера, $\overrightarrow{N}$ -- реакция нити (их две).

Спроектируем (1.1) на ось X, получим:

Модуль силы Ампера для прямого конечного проводника с током равен:

где $\alpha =0$ -- угол между векторами магнитной индукции и направлением течения тока.

Подставим (1.3) в (1.2) выразим силу тока, получим:

Ответ: $I=\frac{2N-mg}{Bl}.$ Из точки А и точку В.

Пример 2

Задание: По проводнику в виде половины кольца радиуса R течет постоянный ток силы I. Проводник находится в однородном магнитном поле, индукция которого равна B, поле перпендикулярно плоскости, в которой лежит проводник. Найдите силу Ампера. Провода, которые подводят ток вне поля.

Пусть проводник находится в плоскости рисунка (рис.3), тогда линии поля перпендикулярны плоскости рисунка (от нас). Выделим на полукольце бесконечно малый элемент тока dl.

На элемент тока действует сила Ампера равная:

\\ \left(2.1\right).\]

Направление силы определяется по правилу левой руки. Выберем координатные оси (рис.3). Тогда элемент силы можно записать через его проекции (${dF}_x,{dF}_y$) как:

где $\overrightarrow{i}$ и $\overrightarrow{j}$ -- единичные орты. Тогда силу, которая действует на проводник, найдем как интеграл по длине провода L:

\[\overrightarrow{F}=\int\limits_L{d\overrightarrow{F}=}\overrightarrow{i}\int\limits_L{dF_x}+\overrightarrow{j}\int\limits_L{{dF}_y}\left(2.3\right).\]

Из-за симметрии интеграл $\int\limits_L{dF_x}=0.$ Тогда

\[\overrightarrow{F}=\overrightarrow{j}\int\limits_L{{dF}_y}\left(2.4\right).\]

Рассмотрев рис.3 запишем, что:

\[{dF}_y=dFcos\alpha \left(2.5\right),\]

где по закону Ампера для элемента тока запишем, что

По условию $\overrightarrow{dl}\bot \overrightarrow{B}$. Выразим длину дуги dl через радиус R угол $\alpha $, получим:

\[{dF}_y=IBRd\alpha cos\alpha \ \left(2.8\right).\]

Проведем интегрирование (2.4) при $-\frac{\pi }{2}\le \alpha \le \frac{\pi }{2}\ $подставив (2.8), получим:

\[\overrightarrow{F}=\overrightarrow{j}\int\limits^{\frac{\pi }{2}}_{-\frac{\pi }{2}}{IBRcos\alpha d\alpha }=\overrightarrow{j}IBR\int\limits^{\frac{\pi }{2}}_{-\frac{\pi }{2}}{cos\alpha d\alpha }=2IBR\overrightarrow{j}.\]

Ответ: $\overrightarrow{F}=2IBR\overrightarrow{j}.$

Сила взаимодействия между элементами токов, пропорциональная токам и длине элементов, обратно пропорциональная квадрату расстояния между ними и, зависящая от их взаимного расположения

Анимация

Описание

В 1820 г. Ампер открыл взаимодействие токов - притяжение или отталкивание параллельных токов. Это позволило поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон их взаимодействия как фундаментальный закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844 г. Грассманом (1809-1877 гг.) и имеет вид:

, (в "СИ") (1)

, (в гауссовой системе)

где d F 12 - сила, с которой элемент тока I 1 d I 1 действует на элемент тока I 2 d I 2 ;

r 12 - радиус-вектор, проведенный от элемента I 1 d I 1 к элементу тока I 2 d I 2 ;

c =3Ч 108 м/с - скорость света.

Взаимодействие элементов тока

Рис. 1

Сила d F 12 , с которой элемент тока I 2 d I 2 действует на элемент тока I 1 d I 1 , имеет вид:

. (в "СИ") (2)

Силы d F 12 и d F 21 , вообще говоря, не коллинеарны друг другу, следовательно, взаимодействие элементов тока не удовлетворяет третьему закону Ньютона:

d F 12 +d F 21 № 0.

Закон (1) имеет вспомогательный смысл, приводя к правильным, подтвержденным на опыте значениям силы только после интегрирования (1) по замкнутым контурам L 1 и L 2 .

Сила, с которой ток I 1 , текущий по замкнутому контуру L 1 , действует на замкнутый контур L 2 с током I 2 , равна:

. (в "СИ") (3)

Аналогичный вид имеет сила d F 21 .

Для сил взаимодействия замкнутых контуров с током третий закон Ньютона выполняется:

d F 12 +d F 21 =0

В полной аналогии с электростатикой взаимодействие элементов тока представляется так: элемент тока I 1 d I 1 в точке нахождения элемента тока I 2 d I 2 создает магнитное поле, взаимодействие с которым элемента тока I 2 d I 2 приводит к возникновению силы d F 12 .

, (4)

. (5)

Соотношение (5), описывающее порождение магнитного поля током, называется законом Био-Савара.

Сила взаимодействия параллельных токов.

Индукция магнитного поля, создаваемого прямолинейным током I 1 , текущим по бесконечно длинному проводнику, в точке нахождения элемента тока I 2 dx 2 (см. рис. 2) выражается формулой:

. (в "СИ") (6)

Взаимодействие двух параллельных токов

Рис. 2

Формула Ампера, определяющая силу, действующую на элемент тока I 2 dx 2 , находящийся в магнитном поле В 12 , имеет вид:

, (в "СИ") (7)

. (в гауссовой системе)

Эта сила направлена перпендикулярно проводнику с током I 2 и является силой притяжения. Аналогичная сила направлена перпендикулярно проводнику с током I 1 и является силой притяжения. Если токи в параллельных проводниках текут в противоположные стороны, то такие проводники отталкиваются.

Андре Мари Ампер (1775-1836) - французский физик.

Временные характеристики

Время инициации (log to от -15 до -12);

Время существования (log tc от 13 до 15);

Время деградации (log td от -15 до -12);

Время оптимального проявления (log tk от -12 до 3).

Диаграмма:

Технические реализации эффекта

Схема установки для "взвешивания" токов измерения

Реализация единицы 1А с помощью силы, действующей на катушку с током.

Внутри большой фиксированной катушки помещается «измерительная катушка», на которую действует подлежащая измерению сила. Измерительная катушка подвешена к коромыслу чувствительных аналитических весов (рис. 3).

Схема установки для «взвешивания» токов измерения

Рис. 3

Применение эффекта

Закон Ампера взаимодействия токов, или, что - то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов - магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

Электродинамометр Вебера

Рис. 4

Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой ll ў подвижная катушка C , ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме ll ў зеркала f.

Литература

1. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2. Тамм И.Е. Основы теории электричества.- М.: Государственное издательство технико-теоретической литературы, 1954.

3. Калашников С.Г. Электричество.- М.: Наука, 1977.

4. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

5. Камке Д., Кремер К. Физические основы единиц измерения.- М.: Мир, 1980.

Ключевые слова

  • сила Ампера
  • магнитное поле
  • закон Био-Савара
  • индукция магнитного поля
  • взаимодействие элементов тока
  • взаимодействие параллельных токов

Разделы естественных наук: