Рефераты Изложения История

Дисперсная система состоящая из твердой дисперсной фазы. Дисперсные системы материал по химии (11 класс) на тему

Дисперсные системы. Определение. Классификация.

Растворы

В предыдущем параграфе мы говорили о растворах . Здесь коротко напомним об этом понятии.


Растворами называют однородные (гомогенные) системы, состоящие из двух и более компонентов.


Гомогенная система – это однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела).


Такое определение раствора не вполне корректно. Оно скорее относится к истинным растворам .


В тоже время существуют ещё коллоидные растворы , которые являются не гомогенными, а гетерогенными , т.е. состоят из разных фаз, разделённых поверхностью раздела.


Для того чтобы достичь большей чёткости в определениях используют другой термин – дисперсные системы .


Перед рассмотрением дисперсных систем немного расскажем об истории их изучения и о появления такого термина как коллоидные растворы .

История вопроса

Ещё в 1845 г. химик Франческо Сельми, исследуя свойства различных растворов, заметил, что биологические жидкости – сыворотка и плазма крови, лимфа и другие – резко отличаются по своим свойствам от обычных истинных растворов, и поэтому такие жидкости были им названы псевдорастворами.

Коллоиды и кристаллоиды

Дальнейшие исследования в этом направлении, проводившиеся с 1861 г. английским учёным Томасом Грэмом, показали, что одни вещества, быстро диффундирующие и проходящие через растительные и животные мембраны, легко кристаллизуются, другие же обладают малой способностью к диффузии, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки.


Первые Грэм назвал кристаллоидами , а вторые – коллоидами (от греческого слова kolla – клей и eidos – вид) или клееподобными веществами.


В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др.


В таблице ниже приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18С.



Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость.


Кромме того у кристаллоидов была обнаружена способность не только быстро диффундировать, но и диализироваться , т.е. проходить через мембранны, в противоположность коллоидам, имеющим больший размер молекул и поэтому медленно диффундирующим и не проникающим через мембраны.


В качестве мембран используют стенки бычьего пузыря, целлофан, плёнки из железисто-синеродистой меди и т.д.


На основании сделанных наблюдений Грэм установил, что все вещества могут быть подразделены на кристаллоиды и коллоиды .

Русские не согласны

Против такого строго разделения химических веществ возражал профессор Киевского университета И.Г. Борщёв (1869). Мнение Борщёва позднее было подтвеждено исследованиями другого русского учёного Веймарна , который доказал, что одно и то же вещество в зависимости от условий может проявлять свойства коллоидов или кристаллоидов.


Так, например, раствор мыла в воде обладает свойствами коллоида , а мыло, растворённое в спирте, проявляет свойства истинных растворов .


Точно также кристаллические соли, например, поваренная соль, растворённая в воде, даёт истинный раствор , а в бензоле – коллоидный раствор и т.п.


Гемоглобин же или яичный альбумин, обладающие свойствами коллоидов, могут быть получены в кристаллическом состоянии.


Д.И. Менделеев полагал, что любое вещество, в зависимости от условий и природы среды, может проявлять свойства коллоида . В настоящее время любое вещество можно получить в коллоидном состоянии.


Таким образом, нет оснований подразделять вещества на два обособленных класса – на кристаллоиды и коллоиды, а можно говорить о коллоидном и кристаллоидном состоянии вещества.


Под коллоидным состоянием вещества подразумевается определённая степень его раздробленности или дисперсности и нахождении коллоидных частиц во взвешенном состоянии в растворителе.


Наука, изучающая физико-химические свойства гетерогенных высокодисперсных и высокомолекулярных систем называется коллоидной химией .

Дисперсные системы

Если одно вещество, находящееся в раздробленном (диспергированном) состоянии, равномерно распределено в массе другого вещества, то такую систему называют дисперсной.


В таких системах раздробленное вещество принято называть дисперсной фазой , а среду, в которой она распределена, - дисперсионной средой .


Так, например, система, представляющая собой взмученную глину в воде, состоит из взвешенных мелких частиц глины – дисперсной фазы и воды – дисперсионной среды.


Дисперсные (раздробленные) системы являются гетерогенными .


Дисперсные системы, в отличие от гетерогенных с относительно крупными, сплошными фазами, называют микрогетерогенными , а коллоиднодисперсные системы называют ультрамикрогетерогенными .

Классификация дисперсных систем

Классификацию дисперсных систем чаще всего производят исходя из степени дисперсности или агрегатного состояния дисперсной фазы и дисперсионной среды.

Классификация по степени дисперсности

Все дисперсные системы по величине частиц дисперсной фазы можно разделить на следующие группы:



Для справки прводим единицы размеров в системе СИ:
1 м (метр) = 102 см (сантиметра) = 103 мм (миллиметра) = 106 мкм (микрометра) = 109 нм (нанометра).

Иногда применяют другие единицы – мк (микрон) или ммк (миллимикрон), причём:
1 нм = 10 -9 м =10 -7 см = 1 ммк;
1 мкм = 10 -6 м = 10 -4 см = 1 мк.


Грубодисперсные системы.


Эти системы содержат в качестве дисперсной фазы наиболее крупные частицы диаметром от 0,1 мк и выше . К этим системам относятся суспензии и эмульсии .


Суспензиями называют системы, в которых твёрдое вещество находится в жидкой дисперсионной среде, например, взвесь крахмала, глины и др. в воде.


Эмульсиями называют дисперсионные системы двух несмешивающихся жидкостей, где капельки одной жидкости во взвешенном состоянии распределены в объёме другой жидкости. Например, масло, бензол, толуол в воде или капельки жира (диаметром от 0,1 до 22 мк) в молоке и др.


Коллоидные системы.


Они имеют размеры частиц дисперсной фазы от 0,1 мк до 1 ммк (или от 10 -5 до 10 -7 см). Такие частицы могут проходить через поры фильтровальной бумаги, но не проникают через поры животных и растительных мембран.


Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок.


Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др.


Молекулярно-дисперсные системы.


Такие системы имеют размеры частиц, не превышающие 1ммк. К молекулярно-дисперсным системам относятся истинные растворы неэлектролитов.


Ионно-дисперсные системы.


Это растворы различных электролитов, как, например, солей, оснований и т.д., распадающихся на соответствующие ионы, размеры которых весьма малы и выходят далеко за пределы
10 -8 см .


Уточнение по повду представления истинных растворов как дисперсных системах.

Из приведённой здесь классификации видно, что любой раствор (как истинный, так и коллоидный) можно представить как дисперсную среду. Истинные и коллоидные растворы будут различаться размерами частиц дисперсных фаз. Но выше мы писали о гомогенности истинных растворов, а дисперсионные системы гетерогенны. Как разрешить это противоречие?

Если говорить о структуре истинных растворов, то их гомогенность будет относительной. Структурные единицы истинных растворов (молекулы или ионы) значительно меньше частиц коллоидных растворов. Поэтому, можно сказать, что по сравнению с коллоидными растворами и взвесями, истинные растворы гомогенны.

Если же говорить о свойствах истинных растворов, то их нельзя в полной мере называть дисперсными системами, поскольку обязательным существованием дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

В коллоидных растворах и грубых взвесях дисперсная фаза и дисперсионная среда практически не смешиваются и не реагируют друг с другом химически. Этого совсем нельзя сказать об истинных растворах. В них при растворении вещества смешиваются и даже взаимодействуют друг с другом. По этой причине коллоидные растворы резко отличаются по свойствам от истинных растворов.


Размеры некоторых молекул, частиц, клеток.



По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно меняться и свойства дисперсных систем. При этом коллоидные системы занимают как бы промежуточное положение между грубыми взвесями и молекулярно-дисперсными системами.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.

Пены – это дисперсия газа в жидкости, причём в пенах жидкость вырождается до тонких плёнок, разделяющих отдельные пузырьки газа.


Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена другой, нерастворяющей её жидкостью (например вода в жире).


Суспензиями называют низкодисперсные системы твёрдых частиц в жидкостях.


Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем:


Дисперсная фаза
Дисперсионная среда
Название и пример

Газообразная

Газообразная

Дисперсная система не образуется

Газообразная

Газовые эмульсии и пены

Газообразная

Пористые тела: поролон пемза

Газообразная

Аэрозоли: туманы, облака

Эмульсии: нефть, крем, молоко, маргарин, масло

Капилярные системы: Жидкость в пористых телах, грунт, почва

Газообразная

Аэрозоли (пыли, дымы), поршки

Суспензии: пульпа, ил, взвесь, паста

Твёрдые системы: сплавы, бетон

Золи – другое название коллоидных растворов.


Коллоидные растворы иначе называют золями (от латинского solutus – растворённый).


Дисперсные системы с газообразной дисперсионной средой называют аэрозолями . Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым – аэрозоли с твёрдой дисперсной фазой. Дым более высокодисперсная система, чем пыль.


Дисперсные системы с жидкой дисперсионной средой называют лизолями (от греческого «лиос» – жидкость).


В зависимости от растворителя (дисперсионной среды), т.е. воды, спирта бензола или эфира и т.д., различают гидрозоли, алкозоли, бензоли, этерозоли и т.д.


Связнодисперсные системы. Гели.


Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы.


К свободнодисперсным системам относятся аэрозоли, лизоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести.



На рисунках выше изображены свободно-дисперсные системы :
На рисунках а, б, в изображены корпускулярно-дисперсные системы :
а,б - монодисперсные системы,
в - полидисперсная система,
На рисунке г изображена волокнисто-дисперсная система
На рисунке д изображена плёночно-дисперсная система


– твердообразны. Они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки.


Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называются гелями .


Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием).



На рисунках а, б, в изображены связнодисперсные системы :
а - гель,
б - коагулят с плотной структурой,
в - коагулят с рыхлой - "арочной" структурой
На рисунках г, д изображены капилярнодисперсные системы


Порошки (пасты), пены – примеры связнодисперсных систем.


Почва , образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.


Сплошную массу вещества могут пронизывать поры и капиляры, образующие капилярнодисперсные системы. К ним относятся, например, древесина, кожа, бумага, картон, ткани .

Лиофильность и лиофобность

Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей:


1. Лиофобные (от греческого phobia – ненависть ) и

2. Лиофильные (от греческого philia – любовь ).


У лиофобных золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя тонкую оболочку из молекул растворителя.


В частности, если дисперсионной средой является вода, то такие системы называются гидрофобными , например, золи металлов железа, золота, сернистого мышьяка, хлористого серебра и т.д.


В лиофильных системах между диспергированным веществом и растворителем имеется сродство. Частицы дисперсной фазы, в этом случае, приобретают более объёмную оболочку из молекул растворителя.


В случае водной дисперсионной среды такие системы называются гидрофильными , как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др.

Коагуляция коллоидов. Стабилизаторы.
Вещество на границе раздела фаз.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.


Свойства вещества в этой межфазовой поверхности , толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы.


Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.


В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества).


Это происходит, например, на границе жидкости или твёрдого тела с их паром. Либо в пограничном слое молекулы вещества взаимодействуют с молекулами другой химической природы, например, на границе двух взаимно малорастворимых жидкостей.


В результате различия в характере взаимодействия внутри объёма фаз и на границе фаз возникают силовые поля , связанные с этой неравномерностью. (Подробнее об этом в параграфе Поверхностное натяжение жидкости.)


Чем больше различие в напряжённости межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемой поверхностной энергией .


Поверхностное натяжение
Для оценки поверхностной энергии пользуются такой величиной, как удельная свободная поверхностная энергия. Она равна работе затрачиваемой на образование единицы площади новой поверхности раздела фаз (при условии постоянной температуры).
В случае границы двух конденсированных фаз эту величину называют пограничным натяжением .
Когда говорят о границе жидкости с её парами, то эту величину называют поверхностным натяжением .

Коагуляция коллоидов

Все самопроизвольные процессы происходят в направлении уменьшения энергии системы (изобарного потенциала).


Аналогично, на границе раздела фаз самопроизвольно происходят процессы в направлении уменьшения свободной поверхностной энергии.


Свободная энергия тем меньше, чем меньше поверхность раздела фаз.


А поверхность раздела фаз, в свою очередь, связана со степенью дисперсности растворённого вещества. Чем выше дисперсность (мельче частицы дисперсной фазы), тем больше поверхность раздела фаз.


Таким образом, в дисперсных системах всегда существуют силы, приводящие к уменьшению суммарной поверхности раздела фаз , т.е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях – агрегация высокодисперсных частиц в более крупные образования.


Всё это приводит к разрушению дисперсных систем: туманы и дождевые облака проливаются дождём, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или в случае вытянутых частиц дисперсной фазы, превращаются в гель.


Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью .

Стабилизаторы дисперсных систем

Как было сказано ранее, дисперсные системы принципиально термодинамически неустойчивы . Чем выше дисперсность, тем больше свободная поверхностная энергия, тем больше склонность к самопроизвольному уменьшению дисперсности.


Поэтому для получения устойчивых, т.е. длительно сохраняющихся суспензий, эмульсий, коллоидных растворов, необходимо не только достигнуть заданной дисперсности, но и создать условия для её стабилизации.


Ввиду этого устойчивые дисперсные системы состоят не менее чем из трёх компонентов: дисперсной фазы, дисперсионной среды и третьего компонента – стабилизатора дисперсной системы .


Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу.


Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой.


Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют защитными коллоидами.


Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.


Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий.

Общие представления о дисперсных системах

Химическое взаимодействие в гомогенных реакций происходит при эффективных столкновениях активных частиц, а в гетерогенных – на поверхности раздела фаз при контакте реагирующих веществ, причем, скорость и механизм реакции зависят от площади поверхности, которая тем больше, чем сильнее развита поверхность. С этой точки зрения особый интерес представляют дисперсные системы, обладающие высокой удельной поверхностью.

Дисперсная система – это смесь, состоящая как минимум из двух веществ, которые не реагируют друг с другом химически и обладают практически полной взаимной нерастворимостью. Дисперсная система - это система, в которой очень измельченные частички одного вещества равномерно распределены в объеме другого.

Рассматривая дисперсные системы, различают два понятия: дисперсная фаза и дисперсионная среда (рис. 10.1).

Дисперсная фаза – это совокупность частиц диспергированного до мелких размеров вещества, равномерно распределенных в объеме другого вещества. Признаками дисперсной фазы является раздробленность и прерывистость.

Дисперсионная среда – это вещество, в котором равномерно распределены частицы дисперсной фазы. Признаком дисперсионной среды является ее непрерывность.

Дисперсную фазу можно отделить от дисперсионной среды физическим способом (центрифугированием, сепарированием, отстаиванием и т. п.).

Рисунок 10.1 – Дисперсная система: частицы дисперсной фазы s (в виде мелких твердых частичек, кристалликов, капель жидкости, пузырьков газа, ассоциатов молекул или ионов), обладающие адсорбционным слоем d , распределены в однородной непрерывной дисперсионной среде f.

Дисперсные системы классифицируют по разным отличительным признакам: дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур в дисперсных системах.

Классификация по степени дисперсности

В зависимости от размеров частиц дисперсной фазы все дисперсные системы условно делятся на три группы (рис. 10.2).

Рисунок 10.2 – Классификация дисперсных систем по размеру частиц (для сравнения приведены размеры частиц в истинных растворах)

1. Грубодисперсные системы , в которых размер частиц более 1мкм (10 –5 м). Для этой группы дисперсных систем характерны такие признаки: частицы дисперсной фазы оседают (или всплывают) в поле гравитационных сил, не проходят сквозь бумажные фильтры; их можно рассмотреть в обычном микроскопе. К грубодисперсным системам относятся суспензии, эмульсии, пыль, пена, аэрозоли и т.п.

Суспензия – это дисперсная система, в которой дисперсной фазой является твердое вещество, а дисперсионной средой – жидкость.

Примером суспензии может быть система, образующаяся при взбалтывании глины или мела в воде, краски, пасты.

Эмульсия – это дисперсная система, в которой жидкая дисперсная фаза равномерно распределена в объеме жидкой дисперсионной среды, т.е. эмульсия состоит из двух взаимно нерастворимых жидкостей.

В качестве примера эмульсий можно назвать молоко (в нем дисперсной фазой выступают капли жидкого жира, а дисперсионной средой – вода), сливки, майонез, маргарин, мороженое.

При отстаивании суспензии и эмульсии разделяются (расслаиваются) на составные части: дисперсную фазу и дисперсионную среду. Так, если энергично взболтать бензол с водой, то образуется эмульсия, которая спустя некоторое время разделяется на два слоя: верхний бензольный и нижний водный. Для предотвращения расслаивания эмульсий к ним прибавляют эмульгаторы – вещества, придающие эмульсиям агрегатную стабильность.

Пена – ячеистая грубодисперсная система, в которой дисперсной фазой является совокупность пузырьков газа (или пара), а дисперсионной средой – жидкость.

В пенах общий объем находящегося в пузырьках газа может в сотни раз превосходить объем жидкой дисперсионной среды, заключенной в прослойках между пузырьками газа.

2. Микрогетерогенные (или тонкодисперсные ) промежуточные системы, в которых размер частиц колеблется в пределах 10 – 5 –10 –7 м. К ним относятся тонкие взвеси, дымы, пористые твердые тела.

3. Ультрамикрогетерогенные (или коллоидно-дисперсные ) системы, в которых частицы размером 1–100нм (10 –9 –10 –7 м) состоят из 10 3_ 10 9 атомов и отделены от растворителя поверхностью раздела. Коллоидные растворы характеризуются предельно-высокодисперсным состоянием, их обычно называют золи , или часто лиозоли , чтобы подчеркнуть, что дисперсионной средой является жидкость. Если в качестве дисперсионной средой взята вода, то такие золи называют гидрозолями , а если органическая жидкость - органозолями .

Для большинства тонкодисперсных систем присущи определенные особенности:

    невысокая скорость диффузии;

    частицы дисперсной фазы (т.е. коллоидные частицы) можно рассмотреть лишь с помощью ультрамикроскопа или электронного микроскопа;

    рассеивание света коллоидными частицами, вследствие чего в ультрамикроскопе они приобретают вид световых пятен – эффект Тиндаля (рис. 10.3);

Рисунок 10.3 – Ультрамикрогетерогенная (тонкодисперсная) система: а) коллоидный раствор; б) схема отклонения узкого луча света при прохождении через коллоидный раствор; в) рассеивание света коллоидным раствором (эффект Тиндаля)

  • на поверхности раздела фаз в присутствии стабилизаторов (ионов электролитов) образуется ионный слой или сольватная оболочка, способствующие существованию частиц в суспендированном виде;
  • дисперсная фаза является либо совсем нерастворимой, либо незначительно растворимой в дисперсионной среде.

В качестве примеров коллоидных частиц можно привести крахмал, белки, полимеры, каучук, мыла, Алюминий и Ферум (III) гидроксиды.

Классификация дисперсных систем соотношению агрегатных состояний дисперсной фазы и дисперсионной среды

Данная классификация предложена Оставльдом (табл. 10.1). При схематической записи агрегатного состояния дисперсных систем первым указывают буквами Г (газ), Ж (жидкость) или Т (твердое) агрегатное состояние дисперсной фазы, а затем ставят тире (или знак дроби) и записывают агрегатное состояние дисперсионной среды.

Таблица 10.1 – Классификация дисперсных систем

Классификация дисперсных систем по интенсивности молекулярного взаимодействия

Данная классификация предложена Г.Фрейндлихом и применяемая исключительно для систем с жидкой дисперсионной средой.

  1. Лиофильные системы , в которых дисперсная фаза взаимодействует с дисперсионной средой и при определенных условиях способна в ней растворяться – это растворы коллоидных поверхностно-активных веществ (ПАВ), растворы высокомолекулярных соединений (ВМС). Среди разнообразных лиофильных систем наиболее важны в практическом отношении ПАВ, которые могут находиться как в молекулярно-растворенном состоянии, так и в виде агрегатов (мицелл), состоящих из десятков, сотен и более молекул.
  2. Лиофобные системы , в которых дисперсная фаза не способна взаимодействовать с дисперсионной средой и растворяться в ней. В лиофобных системах взаимодействие между молекулами различных фаз значительно слабее, чем в случае лиофильных систем; межфазное поверхностное натяжение велико, вследствие чего система проявляет тенденцию к самопроизвольному укрупнению частиц дисперсной фазы.

Классификация дисперсных систем по физическому состоянию

Автор классификации П.Ребиндером. По этой классификации дисперсная система обозначается дробью, в которой дисперсная фаза ставится в числителе, а дисперсионная среда – в знаменателе. Например: Т 1 /Ж 2 обозначает дисперсную систему с твердой фазой (индекс 1) и жидкой дисперсионной средой (индекс 2). Классификация по Ребиндеру делит дисперсные системы на два класса:

1. Свободнодисперсные системы – золи, в которых дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов), обладает текучестью, а частицы дисперсной фазы не контактирует друг с другом, участвуя в беспорядочном тепловом движении и свободно перемещаясь под действием силы тяжести. К ним относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии.

Примеры свободнодисперсных систем:

  • Дисперсные системы в газах с коллоидной дисперсностью (Т 1 /Г 2 – пыль в верхних слоях атмосферы, аэрозоли), с грубой дисперсностью (Т 1 /Г 2 – дымы и Ж 1 /Г 2 – туманы);
  • Дисперсные системы в жидкостях с коллоидной дисперсностью (Т 1 /Ж 2 – лиозоли, дисперсные красители в воде, латексы синтетических полимеров), с грубой дисперсностью (Т 1 /Ж 2 – суспензии; Ж 1 /Ж 2 – жидкие эмульсии; Г 1 /Ж 2 – газовые эмульсии);
  • Дисперсные системы в твердых телах: Т 1 /Т 2 – твердые золи, например, золь желтого металла в стекле, пигментированные волокна, наполненные полимеры.

2. Связнодисперсные (или сплошные) системы . В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры. Такие системы оказывают сопротивление деформации сдвига. Связнодисперсные системы твердообразны; они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки, ограничивающей текучесть дисперсной системы и придающей ей способность сохранять форму. Подобные структурированные коллоидные системы называют гелями.

Примеры связнодисперсных систем:

  • Дисперсные системы с жидкой поверхностью раздела фаз (Г 1 /Ж 2 – пены; Ж1/Ж 2 – пенообразные эмульсии);
  • Дисперсные системы с твердой поверхностью раздела фаз (Г 1 /Т 2 – пористые тела, натуральные волокна, пемза, губка, древесные угли; Ж 1 /Т 2 – влага в граните; Т 1 /Т 2 – взаимопроникающие сетки полимеров).

Получение и очистка коллоидных растворов

Получение коллоидных растворов

Коллоидные растворы могут быть получены диспергационными или к онденсационными методами.

1. Диспергационные методы - это способы получения лиофобных золей путем дробления крупных кусков до агрегатов коллоидных размеров.

Механическое дробление грубодисперсных систем осуществляется путем: раздробления, удара, истирания, расщепления. Измельчение частиц до размеров в несколько десятков микрон осуществляется с помощью шаровых мельниц. Очень тонкое раздробление (до 0,1-1 микрона) достигается на специальных коллоидных мельницах с узким зазором между быстро вращающимся ротором (10-20 тыс.об/мин) и неподвижным корпусом, причем частицы разрываются или истираются в зазоре. Работами П. А. Ребиндера установлено явление понижения сопротивления твердых тел упругим и пластическим деформациям, а также механическому разрушению под влиянием адсорбции поверхностно-активных веществ. Поверхностно-активные вещества облегчают диспергирование и способствуют значительному повышению степени дисперсности.

2. Конденсационные методы - это способы получения коллоидных растворов путем объединения (конденсации) молекул и ионов в агрегаты коллоидных размеров. Система из гомогенной превращается в гетерогенную, т. е. возникает новая фаза (дисперсная фаза). Обязательным условием является пересыщенность исходной системы.

Конденсационные методы классифицируют по природе сил, вызывающих конденсацию, на физическую конденсацию и химическую конденсацию.

Физическая конденсация может осуществляться из паров или путем замены растворителя.

Конденсация из паров. Исходное вещество находится в паре. При понижении температуры пар становится пересыщенным и частично конденсируется, образуя дисперсную фазу. Таким путем получают гидрозоли ртути и некоторых других металлов.

Метод замены растворителя. Метод основан на изменении состава и свойств дисперсионной среды. Например, спиртовой раствор серы, фосфора или канифоли влить в воду, вследствие понижения растворимости вещества в новом растворителе раствор становится пересыщенным и часть вещества конденсируется, образуя частицы дисперсной фазы.

Химическая конденсация состоит в том, что вещество, образующее дисперсную фазу, получается в результате химической реакции. Чтобы в ходе реакции образовался коллоидный раствор, а не истинный раствор или осадок, необходимо соблюдение, по крайней мере, трех условий:

  1. вещество дисперсной фазы нерастворимо в дисперсионной среде;
  2. скорость образования зародышей кристаллов дисперсной фазы гораздо больше, чем скорость роста кристаллов; это условие выполняется обычно тогда, когда концентрированный раствор одного компонента вливается в сильно разбавленный раствор другого компонента при интенсивном перемешивании;
  3. одно из исходных веществ взято в избытке, именно оно является стабилизатором.

Методы очистки коллоидных растворов.

Полученные тем или иным способом коллоидные растворы обычно очищают от низкомолекулярных примесей (молекул и ионов). Удаление этих примесей осуществляется методами диализа,(электродиализ), ультрафильтрации.

Диализ – метод очистки с помощью полупроницаемой мембраной, которая отделяет коллоидный раствор от чистой дисперсионной среды. В качестве полупроницаемой (т.е. проницаемой для молекул и ионов, но непроницаемой для частиц дисперсной фазы) мембраны применяют пергамент, целлофан, коллодий, керамические фильтры и другие тонкопористые материалы. В результате диффузии низкомолекулярные примеси переходят во внешний раствор.

Ультрафильтрацией называется диализ, проводимый под давлением во внутренней камере. По существу, ультрафильтрация является не методом очистки золей, а лишь методом их концентрирования.

Оптические свойства коллоидных растворов

При падении света на дисперсную систему могут наблюдаться следующие явления:

  • прохождение света через систему;
  • преломление света частицами дисперсной фазы (если эти частицы прозрачны);
  • отражение света частицами дисперсной фазы (если частицы непрозрачны);
  • рассеяние света;
  • абсорбция (поглощение) света дисперсной фазой.

Рассеяние света наблюдается для систем, в которых частицы дисперсной фазы меньше, или соизмеримы с длиной волны падающего света. Напомним, что размеры частиц дисперсной фазы в коллоидных растворах - 10 -7 -10 -9 м. Следовательно, светорассеивание является характерным явлением для изучаемых нами коллоидных систем.

Теорию светорассеяния создал Рэлей. Он вывел уравнение, которое связывает интенсивность рассеянного света I с интенсивностью падающего света I 0 . справедливое при условии, что:

  • частицы имеют сферическую форму;
  • частицы не проводят электрический ток (т.е. являются неметаллическими);
  • частицы не поглощают свет, т. е. являются бесцветными;
  • коллоидный раствор является разбавленным в такой степени, что расстояние между частицами больше длины волны падающего света.

Уравнение Рэлея :

  • где V - объем одной частицы,
  • λ - длина волны;
  • n 1 - показатель преломления частицы;
  • n о - показатель преломления среды.

Из уравнения Релея вытекают следующие выводы:

  1. Интенсивность рассеянного света тем больше, чем больше различаются показатели преломления частицы и среды (n 1 - п 0 ).
  2. Если показатели преломления п 1 и n 0 одинаковы, то светорассеяние будет отсутствовать и в неоднородной среде.
  3. Интенсивность рассеянного света тем больше, чем больше частичная концентрация v. Массовая концентрация c , г/дм 3 , которой обычно пользуются при приготовлении растворов, связана с частичной концентрацией выражением:

где ρ - плотность частицы.

Следует отметить, что эта зависимость сохраняется только в области малых размеров частиц. Для видимой части спектра это условие соответствует значениям 2 10 -6 см< r < 4 10 -6 см. С увеличением r рост I замедляется, а при r > λ, рассеяние заменяется отражением. Интенсивность рассеянного света прямо пропорциональна концентрации.

4. Интенсивность рассеянного света обратно пропорциональна длине волны в четвертой степени.

Это означает, что при прохождении через коллоидный раствор пучка белого света преимущественно рассеиваются короткие волны - синей и фиолетовой частей спектра. Поэтому бесцветный золь в рассеянном свете имеет голубоватую окраску, а в проходящем свете - красноватую. Голубой цвет неба также обусловлен рассеянием света мельчайшими капельками воды в атмосфере. Оранжевый или красный цвет неба при восходе или заходе Солнца объясняется тем, что утром или вечером наблюдается, главным образом, свет, прошедший через атмосферу.

поглощение света . Уравнение Рэлея выведено для неокрашенных золей, т. е. не поглощающих свет. Однако многие коллоидные растворы имеют определенную окраску, т.е. поглощают свет в соответствующей области спектра - золь всегда окрашен в цвет, дополнительный к поглощенному. Так, поглощая синюю часть спектра (435-480 нм), золь оказывается желтым; при поглощении синевато-зеленой части (490-500 нм) он принимает красную окраску. Если лучи всего видимого спектра проходят через прозрачное тело или отражаются от непрозрачного, то прозрачное тело кажется бесцветным, а непрозрачное - белым. Если тело поглощает излучение всего видимого спектра, оно кажется черным. Оптические свойства коллоидных растворов, способных к поглощению света, можно характеризовать по изменению интенсивности света при прохождении через систему. Для этого используют закон Бугера-Ламберта-Бера:

где I 0 - интенсивность падающего света; I пр - интенсивность прошедшего через золь света; k - коэффициент поглощения; l - толщина слоя золя; с - концентрация золя.

Если прологарифмировать выражение, получим:

Величину называют оптической плотностью раствора. При работе с монохроматическим светом всегда указывают, при какой длине волны была определена оптическая плотность, обозначая ее D λ .

Мицелярная теория строения коллоидных систем

Рассмотрим строение гидрофобной коллоидной частицы на примере образования золя AgI обменной реакцией

АgNO 3 + KI → AgI + KNO 3 .

Если вещества берутся в эквивалентных количествах, то выпадает кристаллический осадок AgI . Но, если одна из исходных веществ будет в избытке, например КI , процесс кристаллизации AgI ведет к образованию коллоидного раствора - мицеллы AgI .

Схема строения мицеллы гидрозоля AgI показана на рис.10.4.

Рисунок 10.4 – Схема мицеллы гидрозоля AgI, образовавшейся при избытке KI

Агрегат молекул [ mAgI ] количеством 100-1000 (микрокристаллов) – ядро, является зародышем новой фазы, на поверхности которого происходит адсорбция ионов электролита, находящихся в дисперсионной среде. Согласно правилу Панета - Фаянса лучше адсорбцируются ​​ионы, одинаковы с ионами, которые входят в кристаллическую решетку ядра и достраивают эту решетку. Ионы, которые адсорбируются непосредственно на ядре, называются потенциалопределяющие , так как они определяют величину потенциала и знак заряда поверхности, а также и знак заряда всей частицы. Потенциалопределяющими ионами в данной системе являются ионы I - , которые находятся в избытке, входят в состав кристаллической решетки ядра AgI, выполняют роль стабилизаторов и составляют внутреннюю оболочку в жесткой части двойного электрического слоя (ДЭС) мицеллы. Агрегат с адсорбированными на нем ионами I - образует ядро мицеллы.

К отрицательно заряженной поверхности частиц AgI на расстоянии, близком к радиусу гидратированного иона, из раствора притягиваются ионы противоположного знака ( противоионы ) - положительно заряженные ионы К + . Слой противоионов - внешняя оболочка двойного электрического слоя (ДЭС), удерживается как электростатическими силами, так и силами адсорбционного притяжения. Агрегат молекул вместе с твердым двойным слоем называется коллоидной частицей - гранула .

Часть противоионов вследствие теплового движения размещается диффузно вокруг гранулы, и связаны с ней только за счет электростатических сил. Коллоидные частицы вместе с окружающим ее диффузным слоем называется мицелла . Мицелла электронейтральна, так как заряд ядра равен заряду всех противоионов, а гранула обычно имеет заряд, который называется электрокинетический или ξ - дзета - потенциал. В сокращенном виде схему строения мицеллы для данного примера можно записать в таком виде:

Одним из основных положений теории строения коллоидных частиц является представление о строении двойного электрического слоя (ДЭС). Согласно современным представлениям, двойной электрический слой ДЭС состоит из адсорбционного и диффузионного слоев. Адсорбционный слой состоит из:

  • заряженной поверхности ядра мицеллы в результате адсорбции на ней потенциалопределяющих ионов, которые определяют величину потенциала поверхности и его знак;
  • слоя ионов противоположного знака - противоионов, которые притягиваются из раствора к заряженной поверхности. Адсорбционный слой противоионов находится на расстоянии молекулярного радиуса от заряженной поверхности. Между этой поверхностью и противоионами адсорбционного слоя существуют как электростатические, так и адсорбционные силы, и поэтому эти противоионы связаны особенно прочно с ядром. Адсорбционный слой очень плотный, толщина его постоянная и не зависит от изменения внешних условий (концентрации электролита, температуры).

Вследствие теплового движения часть противоионов проникает вглубь дисперсионной среды, и их притяжение к заряженной поверхности гранулы осуществляется только за счет электростатических сил. Эти противоионы составляют диффузный слой , который менее прочно связан с поверхностью. Диффузный слой имеет переменную толщину, которая зависит от концентрации электролитов в дисперсионной среде.

При движении твердой и жидкой фаз друг относительно друга возникает разрыв ДЭС в диффузной части и на границе раздела фаз возникает скачок потенциала, который называют электрокинетическим ξ - потенциалом (дзета - потенциал). Его величина определяется разницей между общим количеством зарядов (φ) потенциалопределяющих ионов и количеством зарядов противоионов (ε), содержащиеся в адсорбционном слое, т.е. ξ = φ - ε. Падение межфазного потенциала при удалении от твердой фазы вглубь раствора показано на рис.10.5.

Рисунок 10.5 Строение ДЭС

Наличие разницы потенциалов вокруг частиц гидрофобного золя препятствует их слипанию при столкновении, то есть являются фактором агрегатной устойчивости золя. Если количество диффузных ионов уменьшается или стремится к нулю, то гранула становится электронейтральной (изоэлектрической состояние) и имеет наименьшую устойчивость.

Таким образом, величина электрокинетического потенциала определяет силы отталкивания, а следовательно и агрегатную устойчивость коллоидного раствора. Достаточная устойчивость коллоидного раствора обеспечивается при величине электрокинетического потенциала ξ = 0,07В, при значениях меньших ξ = 0,03В силы отталкивания слишком слабые, чтобы противостоять агрегации, а потому происходит коагуляция, которая неизбежно заканчивается седиментацией.

Величину электрокинетического потенциала можно определить с помощью прибора для электрофореза по формуле (10.5):

где η - вязкость; ϑ - скорость перемещения частиц; l - расстояние между электродами вдоль раствора; Е - электродвижущая сила, D - диэлектрическая постоянная.

Факторы, влияющие на ξ - потенциал:

  1. Наличие в растворе индифферентного электролита - электролита, который не содержит потенциалопределяющий ион.
  • Индифферентный электролит содержит противоион. В таком случае происходит сжатие диффузионного слоя и падение ξ и как следствие - коагуляция.
  • Индифферентный электролит содержит ион однознаковий с противоионом, но не сам противоион. В этом случае происходит ионный обмен: противоион замещается на ионы индифферентного электролита. Наблюдается падение ξ, но степень падения будет зависеть от природы иона - заместителя, его валентности, степени гидратованости. Лиотропные ряды катионов и анионов – ряды, в которых ионы располагаются по увеличении их способности сжимать диффузный слой и вызвать падение ξ - потенциала.

Li + - Na + - NH 4 + - K + - Rb + - Cs + - Mg 2+ - Ca 2+ - Ba 2+ …

CH 3 COO – - F – - NO 3 – - Cl – - I – - Br – - SCN – - OH – - SO 4 2–

2. Добавление раствора электролита-стабилизатора – электролита, содержащего потенциалопределяемый ион, вызывает увеличение ξ - потенциала, а значить способствует устойчивости коллоидной системы, но до определенного предела.

Устойчивость и коагуляция коллоидных систем

Современную теорию устойчивости и коагуляции коллоидных систем создавали несколько известных ученых: Дерягина, Ландау, Фервей, Овербек и потому ее сокращенно называют теория ДЛФО . Согласно этой теории устойчивость дисперсной системы определяется балансом сил притяжения и отталкивания, возникающих между частицами при их сближении в результате броуновского движения. Различают кинетическую и агрегатную устойчивость коллоидных систем.

  1. Кинетическая (седиментационная) устойчивость - способность дисперсных частиц находиться во взвешенном состоянии и не оседать (не седиментировать). В дисперсных системах, как и в природных растворах, существует броуновское движение. Броуновское движение зависит от размеров частиц, вязкости дисперсной среды, температуры и т.д. Тонкодисперсные системы (золи), частицы которых практически не оседают под действием силы тяжести, относятся к кинетически (седиментационно) устойчивым. К ним также относятся гидрофильные золи - растворы полимеров, белков и т.д. Гидрофобные золи, грубодисперсные системы (суспензии, эмульсии) кинетически неустойчивы. В них достаточно быстро проходит разделение фазы и среды.
  2. Агрегатная устойчивость - способность частиц дисперсной фазы сохранять определенную степень дисперсности неизменной. В агрегатноустойчивых системах частицы дисперсной фазы при столкновения не слипаются и не образуют агрегатов. Но при нарушении агрегатной устойчивости коллоидные частицы образуют крупные агрегаты с последующим выпадением дисперсной фазы в осадок. Такой процесс называется коагуляцией , и протекает он самопроизвольно, так как при этом уменьшается свободная энергия системы (Δ G <0) .

К факторам, которые влияют на стабильность коллоидных систем, относятся:

  1. Наличие электрического заряда дисперсных частиц. Дисперсные частицы лиофобных золей имеют одинаковый заряд, и поэтому при столкновении они будут отталкиваться друг от друга тем сильнее, чем выше дзета - потенциал. Однако электрический фактор не всегда является определяющим.
  2. Способность к сольватации (гидратации) стабилизирующих ионов. Чем больше гидратированные (сольватированы) противоионы в диффузном слое, тем больше общая гидратная (сольватная) оболочка вокруг гранул и тем стабильнее дисперсная система.

Согласно теории при броуновском движении коллоидные частицы свободно сближаются на расстояние до 10 -5 см. Характер изменения ван-дер-ваальсовых сил притяжения (1) и электростатических сил отталкивания (2) между коллоидными частицами показан на рис. 10.6. Результирующая кривая (3) получена путем геометрического сложения соответствующих ординат. При минимальных и больших расстояниях, между частицами преобладает энергия притяжения (I и II энергетические минимумы). В II энергетическом минимуме энергия сцепления частиц недостаточна для удержания их в агрегатированном состоянии. На средних расстояниях, соответствующих толщине двойного электрического слоя, преобладает энергия отталкивания с потенциальным барьером AB, препятствующим слипанию частиц. Практика показывает, что при дзета-потенциале ξ = 70 мВ коллоидные системы характеризуются высоким потенциальным барьером и большой агрегативной устойчивостью. Для дестабилизации коллоидной системы, т.е. осуществления процесса коагуляции, необходимо снизить -потенциал до значений 0 - 3 мВ.

Рисунок 10.6. Потенциальные кривые взаимодействия коллоидных частиц

Коагуляция дисперсных систем

Коагуляция - процесс слипания коллоидных частиц. Данный процесс протекает сравнительно легко под действием самых различных факторов: введение электролитов, неэлектролитов, замораживание, кипячение, перемешивания, действия солнечного света и т.д.. В процессе электролитической коагуляции (под воздействием электролитов) часто наблюдается ионообменная адсорбция: ионы коагулянта с большей валентностью или большим адсорбционным потенциалом вытесняют противоионы сначала диффузного слоя, а затем и адсорбционного слоя. Обмен проходит в эквивалентном количестве, но замена противоионов приводит к тому, что при достаточной концентрации электролитов в дисперсной среде частицы теряют устойчивость и при столкновении слипаются.

Для электролитической коагуляции установлен ряд экспериментальных общих правил:

1. Коагуляцию лиофобных золей вызывают любые электролиты, но с заметной скоростью она наблюдается при достижении определенной концентрации электролита. Порог коагуляции (С к) - это минимальная концентрация электролита необходимая для начала коагуляции золя. При этом наблюдаются внешние изменения, такие как помутнение раствора, изменение его окраски и т.д.


  • где Сэл - молярная концентрация электролита, ммоль/л;
  • Vэл - объем раствора электролита, л;
  • Vз - объем золя, л.

Величина, обратная порогу коагуляции, называется коагулирующей способностью () электролита:

где Ск – порог коагуляции.

2. Правило Шульца – Гарди :

  • коагулирующее действие проявляет тот ион, заряд которого по знаку противоположный заряду поверхности коллоидных частиц (заряду гранулы), причем это действие возрастает с увеличением валентности иона;
  • коагулирующий влияние ионов многократно увеличивается с увеличением валентности ионов. Для одно - двух и трехвалентного ионов коагулирующее действие примерно относятся как 1: 50: 500.

Это объясняется тем, что многовалентные высокозарядных ионы коагулянтов значительно сильнее притягиваются заряженой поверхностью коллоидной частицы, чем одновалентные, и значительно легче вытесняют противоионы из диффузного и даже адсорбционного слоя.

3. Коагулирующее действие органических ионов значительно выше, чем неорганических. Это связано с их высокой адсорбционной способностью, возможностью адсорбироваться в надэквивалентном количестве, а также вызвать перезарядку поверхности коллоидных частиц.

4. В ряде неорганических ионов с одинаковыми зарядами коагулирующая способность зависит от радиуса иона - коагулянта: чем больше радиус, тем больше коагулирующая способность (см. лиотропные ряды ). Это объясняется тем, что степень гидратации ионов уменьшается, например, от L + к Cs + , а это облегчает его внедрение в двойной ионный слой.

5. С наибольшей скоростью коагулируют электронейтральные частицы лиофобных коллоидных золей.

6. Явление привыкания золя. Если к золю быстро добавить коагулянт, то происходит коагуляция, если же медленно - коагуляция отсутствует. Это можно объяснить тем, что между электролитом и золем происходит реакция, в результате которой, образуются пептизаторы, которые стабилизируют дисперсную систему:

Fe (OH) 3 + HCl →FeOCl + 2H 2 O ,

FeOCl → FeO + + Cl - ,

где FeO + - пептизатор для золя Fe (OH) 3 .

Коагулирующее действие смеси электролитов проявляется по-разному в зависимости от природы иона - коагулятора. В смеси электролитов действие может суммироваться с коагулирующем действием каждого электролита. Это явление называется аддитивность ионов (NaCl , KCl). Если коагулирующее действие ионов электролита уменьшается при введении ионов другого электролита наблюдается антагонизм ионов (LiCl , MgCl 2 ). В случае, когда коагулирующее действие ионов электролита увеличивается при введении ионов другого электролита такое явление называется синергизм ионов .

Введение например 10 мл 10 % раствора NaCl в 10 мл золя Fe (OH) 3 приводит к коагуляции этого золя. Но этого можно избежать, если дополнительно ввести в раствор золя одно из защитных веществ: 5 мл желатина, 15 мл яичного альбумина, 20 мл декстрина.

Защита коллоидных частиц

Коллоидная защита - повышение агрегатной устойчивости золя путем введения в него высокомолекулярного соединения (ВМС). Для гидрофобных золей в качестве ВМС обычно используются белки, углеводы, пектины; для неводных золей - каучуки.

Защитное действие ВМС связано с образованием на поверхности коллоидных частиц определенного адсорбционного слоя (Рисунок 10.7). Явление обратное коагуляции называется пептизация .

Рисунок 10.7 Механизм пептизации

Для характеристики защитного действия различных ВМС Зигмонди предложил использовать золотое число. Золотое число - это количество миллиграммов ВМС, которое надо добавить к 10 см 3 0,0006 % - го красного золя золота, чтобы предотвратить его посинение (коагуляцию) при добавлении к нему 1см 3 10 % раствора NaCl. Иногда для характеристики защитного действия ВМС вместо золя золота используются коллоидные растворы серебра (серебряное число), гидроксида железа (железное число) и др. В таблице 10.2 приведены значения этих чисел для некоторых ВМС.

Таблица 10.2 Защитное действие ВМС

На изучение данной темы я отвожу 2 часа. Изучение дисперсных систем в виде отдельного блока я считаю целесообразным, поскольку они широко распространены в быту, природе, играют большую роль в различных производственных и природных процессах (геологических, почвенных). Необходимо знать виды дисперсных систем, их свойства, чтобы научиться понимать проявления нежелательных процессов в окружающей среде и правильно решать многие научно-технические и экологические проблемы.

Если на предыдущих этапах изучения химии учащиеся знакомились с многообразием веществ и установлением взаимосвязи меду строением, составом и свойствами вещества, то при изучении дисперсных систем они узнают о новой зависимости – зависимости свойств вещества от состояния их раздробленности.

При изучении дисперсных систем встречается много новых терминов, поэтому необходимо составить их перечень с соответствующими разъяснениями и по мере знакомства с дисперсными системами обращаться к этому перечню.

Уроки по данной теме я планирую следующим образом:

  1. Дисперсные системы, их виды.
  2. Конференция «Свойства дисперсных систем. Роль дисперсных систем в быту, природе и производственных процессах».

Цель уроков: Обобщить, систематизировать знания по теме; создать на уроке атмосферу поиска и сотрудничества, дать каждому ученику возможность достичь успеха.

Образовательные задачи:

  1. Проконтролировать степень усвоения основных ЗУН по теме:
    - Сформулировать понятие дисперсной системы.
    - Познакомить с классификацией дисперсных систем по различным признакам.
    - Привлечь внимание учащихся к дисперсным системам большой практической значимости:
    суспензиям, эмульсиям, коллоидным растворам, истинным растворам, аэрозолям, пенам.;
  2. Продолжить формирование общеучебных умений (осуществлять самоконтроль; сотрудничать; использовать компьютер, ноутбук, интерактивную доску).
  3. Продолжить формирование навыков самостоятельной работы учащихся с учебником, дополнительной литературой, сайтами Интернета.

Воспитательные задачи:

  1. Продолжить развитие познавательных интересов учащихся;
  2. Воспитывать культуру речи, трудолюбие, усидчивость;
  3. Продолжить формирование ответственного, творческого отношения к труду;

Развивающие задачи:

  1. Развивать умение использовать химическую терминологию
  2. Развивать мыслительные операции (анализ, синтез, установление причинно-следственных связей, выдвижение гипотезы, классификация, проведение аналогий, обобщение, умение доказывать, выделение главного);
  3. Развивать интересы, способности личности;
  4. Развивать умение проводить, наблюдать и описывать химический эксперимент;
  5. Совершенствовать коммуникативные умения учащихся в совместной деятельности (умение вести диалог, выслушивать оппонента, аргументировано обосновывать свою точку зрения) и информационно - познавательную компетентность учащихся.

Предварительная подготовка:

  1. Постановка проблемы;
  2. Прогнозирование практических результатов работы;
  3. Организация самостоятельной (индивидуальной, парной, групповой) деятельности учащихся на уроке и во внеурочное время;
  4. Структурирование содержательной части исследовательской работы (с указанием поэтапных результатов и указанием ролей);
  5. Исследовательская работа в малых группах (обсуждение, поиск источников информации);
  6. Создание слайдовой презентации;
  7. Защита исследовательской работы на конференции.

Оборудование:

  • Перечень: «Термины и их разъяснения».
  • Таблица №6 «Дисперсные системы» - высвечивается на доске и дается на каждый стол.
  • На демонстрационном столе: образцы различных дисперсных систем и прибор для демонстрации эффекта Тиндаля.
  • Компьютеры, медиопроектор.

Урок №1. Дисперсные системы, их виды.

Ход урока.

Во вступительном слове обосновывается необходимость изучения дисперсных систем, подчеркивается, что дисперсные системы – это не отдельный класс веществ, как думали раньше, столкнувшись с коллоидными системами(яичный белок, белок сои и др.), а состояние веществ, но не агрегатное, а состояние раздробленности вещества, обуславливающее его свойства.

Разъясняется значение термина «дисперсный», даются определения дисперсной системы, дисперсной фазы, дисперсной среды.

Отмечается, что дисперсные системы окружают нас повсюду. К ним относятся воздух, вода, пищевые продукты, косметика, лекарства, природные тела(горные породы, организмы растений и животных), а также разнообразные строительные и конструкционные материалы.

Демонстрируются образцы дисперсных систем: вода из-под крана, растворы различных солей, раствор яичного белка, спиртовая вытяжка хлорофилла, канцелярский клей, молоко, глина в воде, лекарственный препарат «Альмагель», питательный крем, зубная паста, кусок пемзы, кусок пенопласта, смесь растительного масла с водой, майонез, аэрозольные баллончики.

Еще раз отмечается, что под дисперсными системами понимают образования из двух и более числа фаз с сильно развитой поверхностью между ними, и что основной признак дисперсной системы – сильно развитая поверхность дисперсной фазы.

Рассматривается классификация дисперсных систем по размеру частиц (см. схему№1) и агрегатному состоянию дисперсной фазы и дисперсной среды (см. таблицу №6) .

Схема №1.

Дисперсные системы:

  1. Грубодисперсные (суспензии, эмульсии, аэрозоли)
  2. Тонкодисперсные (коллоидные и истинные растворы)

Виды дисперсных систем. Таблица №6.

Дисперсные системы

Вид дисперсной системы, ее обозначение.

Примеры дисперсных систем

Дисперсионная фаза

Дисперсионная среда

Твердое тело

Аэрозоль (т/г)

Пыль, дым, хлопья снега

Жидкость (ж)

Суспензии (т/ж)

Коллоидные растворы (т/ж)

Истинные растворы

Глина, зубная паста, губная помада.

Раствор яичного белка, плазма крови, спиртовая вытяжка хлорофилла, кремниевая кислота.

Растворы солей, щелочей, сахара.

Твердое тело (т)

Твердые растворы (т/т)

Сплавы, минералы, цветные стекла.

Жидкость

Аэрозоль (ж/г)

Туман, облака, моросящий дождь, струя из аэрозольного баллончика.

Жидкость(ж)

Эмульсия (ж/ж)

Истинные растворы (ж/ж)

Молоко, масло, майонез, крем, мази, эмульсионные краски.

Нисшие спирты +вода, ацетон + вода.

Твердое тело (т)

Твердая эмульсия (ж/т)

Жемчуг, опал.

Газ

Дисперсной системы не образуется

Жидкость (ж)

Пена (г/ж)

Пена газированной воды, мыльная пена, взбитые сливки, взбитый крем, пастила.

Твердое тело (т)

Твердая пена (г/т)

Пенопласт, пенобетон, пеностекло, пемза, лава.

На основании данных схемы №1 и таблицы №6 характеризуется каждый вид дисперсной системы, классифицируются на демонстрационном столе натуральные объекты по важнейшим видам дисперсных систем.

Класс делится на 5 групп. Каждой группе предлагается по приведенному ниже плану охарактеризовать ту или иную дисперсную систему.

План.

  1. Характеристика дисперсной системы, примеры, где встречается.
  2. Свойства (внешний вид, видимость частиц, способность осаждаться, способность задерживаться фильтром, наличие заряда).
  3. Получение и разрушение дисперсной системы.
  4. Значение дисперсной системы в быту и производственных процессах, в охране окружающей среды.

В соответствии с планом участники каждой группы подбирают материал по следующим видам дисперсных систем: аэрозоли, эмульсии, суспензии, пены, коллоидные растворы или истинные растворы. Обязательно используются электронные учебники и материалы сети Интернет. Материал скачивается в свою папку на компьютер и используется для создания презентации для выступления на конференции по теме «Дисперсные системы вокруг нас».

Кроме того, каждая группа получает практическую задачу, которая стояла перед химиками и была решена специалистами. Задание написано на карточке и вручается руководителю группы.

Задание №1.

Известен следующий способ снижения запыленности воздуха: загрязненный воздух пропускается через камеры, в которых распыляется обычная вода. Капельки воды поглощают частицы пыли и оседают на дно камеры.

Предлагается найти способ повышения степени очистки запыленного воздуха с помощью разбрызгиваемой воды.

(Один из ответов можно найти в книге Г.В.Лисичкина и В.И.Бетанели «Химики изобретают». М., Просвещение, 1990. стр. 85).

Задание №2.

Вводной среде молока эмульгированы мелкие капельки жира. Они постепенно поднимаются на поверхность, поскольку их плотность меньше, чем плотности воды. В молоке за несколько часов образуется слой сливок. Молоко является не устойчивой эмульсией.

Молоко, поступающее в продажу с предприятий молочной промышленности, должны быть более устойчивы к расслоению. Каким образом можно повысить устойчивость данной эмульсии.

Задание №3.

Суспензии – это дисперсные системы, в которых маленькие твердые частицы распределены в жидкости. Суспензии неустойчивы и постепенно твердые частицы под действием силы тяжести выпадают в осадок. Основным способом отделения твердого вещества от жидкости в суспензиях является фильтрование. На фармацевтической фабрике возникла задача быстрого разделения суспензии путем фильтрования, причем было необходимо выделить для дальнейшей переработки, как жидкость, так и взвешенную в ней твердую фазу. Для этого суспензию стали пропускать через мелкоячеистый фильтр из металлической сетки. По мере накопления осадка скорость фильтрования уменьшалась и, наконец, процесс практически прекратился.

Необходимо найти принципиальную схему устройства, которое позволило бы вести процесс фильтрования суспензии в непрерывном режиме.

(Один из ответов можно найти в книге Г.В.Лисичкина и В.И.Бетанели «Химики изобретают». М., Просвещение, 1990. стр. 76).

Задание №4.

Для получения тепло- и звукоизолирующих полимерных материалов их необходимо вспенивать «вспучивать»), т.е. получать пенопласты. Это материалы, в которых в массе твердого полимера содержится большое количество пузырьков газа. Одним из способов получения пенопластов является применение веществ – газообразователей. Эти вещества при полимеризации разлагаются с выделением газа.

Необходимо предложить вещества, которые можно использовать в качестве газообразователей, и составить уравнения реакций их разложения.

Задание №5.

Выяснить, что такое кровоостанавливающий карандаш. Объяснить, на чем основано его действие.

К уроку конференции учащиеся каждой группы определяют, какие наглядные средства будут ими применяться, т.е. какие натуральные объекты они будут использовать во время выступления своей группы, какие опыты могут продемонстрировать, какие схемы показать и т.д. на уроке информатики дорабатывают свои презентации. По всем вопросам могут получить консультации учителя. Время выступления каждой группы ограничено: не более 6-7 минут.

Для подготовки к конференции можно использовать библиотечку кабинета химии:

  • Энциклопедический словарь юного химика. М., Педагогика, 1990.
  • Петрянов И.В., Сутугин А.Г. Вездесущие аэрозоли. М., Педагогика, 1989.
  • Юдин А.М., Сучков В.Н. Химия в быту. М., Химия, 1982.
  • Справочные материалы. М., Просвещение, 1984.
  • Давыдова С.Л. химия в косметике. М., Знание, 1990.
  • Г.В.Лисичкина и В.И.Бетанели «Химики изобретают». М., Просвещение, 1990.

Урок №2. Конференция «Свойства дисперсных систем. Роль дисперсных систем в быту, природе и производственных процессах».

План урока конференции:

  1. Вступительное слово учителя.
  2. Сообщения групп учащихся (аэрозоли, эмульсии, суспензии, пены, коллоидные растворы, истинные раствор) – учащиеся используют подготовленные презентации, демонстрационный материал. Приложение .
  3. Подведение итогов конференции.

Во вступительном слове напоминается, с какими видами дисперсных систем учащиеся познакомились, где дисперсные системы встречаются в жизни, как их классифицируют.

Ученики защищают свои работы в виде презентации и делают конспективные записи, заполняя заранее подготовленные опорные таблицы.

Сведения об изученных дисперсных системах.

Характеристика дисперсных систем.

Виды дисперсных систем.

аэрозоли

эмульсии

суспензии

Коллоидные растворы

Истинные растворы

Размеры частиц

Внешний вид

Способность осаждаться

Получение

Разрушение

Значение

В заключительном слове учитель еще раз отмечает большое практическое значение дисперсных систем. Они применяются в пищевой промышленности, производстве искусственного шелка, крашении тканей, кожевенной промышленности, сельскохозяйственном производстве, почвоведении, медицине, строительстве и других отраслях народного хозяйства. Знания о дисперсных системах, способах образования и разрушения, закономерностях поведения их в природных процессах позволяют решать научно-технические и экологические проблемы.

Используемая литература:

  1. Габриелян О.С. Химия 11 класс. – М. Дрофа 2005.
  2. Лагунова Л.И. Преподавание обобщающего курса химии в средней школе. – Тверь, 1992г.
  3. Политова С.И. Общая Химия. Опорные конспекты. 11 класс. – Тверь, 2006г.

Классификация дисперсных систем может быть проведена на основе различных свойств: по дисперсности, по агрегатному состоянию фаз, по взаимодействию дисперсной фазы и дисперсной среды, по межчастичному взаимодействию.

Классификация по дисперсности

Зависимость величины удельной поверхности от дисперсности S уд = f(d) графически выражается равносторонней гиперболой (рис.).

Из графика видно, что с уменьшением поперечных размеров частиц величина удельной поверхности существенно возрастает. Если кубик с размером ребра 1 см измельчить до кубических частиц с размерами d = 10 -6 см, величина общей межфазной поверхности возрастет с 6 см 2 до 600 м 2 .

При d ≤ 10 -7 см гипербола обрывается, так как частицы уменьшаются до размеров отдельных молекул, и гетерогенная система становится гомогенной, в которой межфазная поверхность отсутствует. По степени дисперсности дисперсные системы делятся на:

  • грубодисперсные системы, d ≥ 10 -3 см;
  • микрогетерогенные системы, 10 -5 ≤ d ≤ 10 -3 см;
  • коллоидно-дисперсные системы или коллоидные растворы, 10 -7 ≤ d ≤ 10 -5 см;
  • истинные растворы, d ≤ 10 -7 см.
Необходимо подчеркнуть, что самую большую удельную поверхность имеют частицы дисперсной фазы в коллоидных растворах.

Классификация по агрегатному состоянию фаз

Классификация по агрегатному состоянию фаз была предложена Вольфгангом Оствальдом. В принципе возможно 9 комбинаций. Представим их в виде таблицы.
Агрегатное состояние дисперсной фазы Агрегатное состояние дисперсной среды Условное обозначения Название системы Примеры
г г г/г аэрозоли атмосфера Земли
ж г ж/г туман, слоистые облака
тв г тв/г дымы, пыли, перистые облака
г ж г/ж газовые эмульсии, пены газированная вода, мыльная пена, лечебный кислородный коктейль, пивная пена
ж ж ж/ж эмульсии молоко, масло сливочное, маргарин, кремы и т. д.
тв ж тв/ж лиозоли, суспензии лиофобные коллоидные растворы, суспензии, пасты, краски ит. д.
г тв г/тв твердые пены пемза, твердые пены, пенопласт, пенобетон, хлеб, пористые тела в газе ит. д.
ж тв ж/тв твердые эмульсии вода в парафине, природпые минералы с жидкими включениями, пористые тела в жидкости
тв тв тв/тв твердые золи сталь, чугун, цветные стекла, драгоценные камни: золь Аи в стекле — рубиновое стекло (0,0001%) (1т стекла — 1г Au)

Классификация по взаимодействию дисперсной фазы и дисперсной среды (по межфазному взаимодействию).

Эта классификация пригодна только для систем с жидкой дисперсионной средой. Г. Фрейндлих предложил подразделить дисперсных систем на два вида:
  1. лиофобные, в них дисперсная фаза не способна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней, к ним относятся коллоидные растворы, микрогетерогенные системы;
  2. лиофильные, в них дисперсная фаза взаимодействует с дисперсионной средой и при определенных условиях способна в ней растворяться, к ним относятся растворы коллоидных ПАВ и растворы ВМС.

Классификация по межчастичному взаимодействию

Согласно этой классификации дисперсные системы подразделяют на:
  • свободнодисперсные (бесструктурные);
  • связнодисперсные (структурированные).
В свободнодисперсных системах частицы дисперсной фазы не связаны друг с другом и способны независимо передвигаться в дисперсионной среде.

В связнодисперсных системах частицы дисперсной фазы связаны друг с другом за счет межмолекулярных сил, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, не способны к взаимному перемещению и могут совершать только колебательные движения.

Список использованной литературы

  1. Гельфман М. И., Ковалевич О. В., Юстратов В. П. Коллоидная химия. 2-е изд., стер. - СПб.: Издательство "Лань", 2004. - 336 с.: ил. ISBN 5-8114-0478-6 [с. 8-10]

№6. Классификацию дисперсных систем см. табл. 3.

КЛАССИФИКАЦИЯ ДИСПЕРСНЫХ СИСТЕМ Таблица ПО АГРЕГАТНОМУ СОСТОЯНИЮ

Дисперсионная среда

Дисперсная

Примеры некоторых природных и бытовых дисперсных систем

Жидкость

Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли

Твердое вещество

Пыль в воздухе, дымы, смог, самумы (пыльные и песчаные бури), твердые аэрозоли

Жидкость

Шипучие напитки, пены

Жидкость

Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)

Твердое вещество

Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы

Твердое вещество,

Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки

Жидкость

Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)

Твердое вещество

Горные породы, цветные стекла, некоторые сплавы