Рефераты Изложения История

Электрический ток в полупроводниках. Собственная и примесная проводимости

Собственная проводимость полупроводников

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ($\triangle E$). Основную зону полупроводника называют валентной зоной, зону возбужденных состояний -- зоной проводимости. При T=0 К валентная зона заполнена целиком, при этом зона проводимости свободна. Следовательно, вблизи абсолютного нуля полупроводники не проводят ток. Вообще говоря, диэлектрики и полупроводники отличаются с точки зрения зонной теории, только шириной запрещенной зоны ($\triangle E$). Условно к диэлектрикам относят полупроводники у которых $\triangle E>2эВ.$

Примечание 1

У полупроводников с повышением температуры электроны обмениваются энергией с ионами кристаллической решетки. Из-за этого электрон может обрести добавочную кинетическую энергию размера $\approx kT.\ $Этой энергии может хватить для того, чтобы некоторую часть электронов перевести в зону проводимости. Эти электроны в зоне проводимости проводят ток.

В валентной зоне освобождаются квантовые состояния, которые не заняты электронами. Такие состояния получили названия дырок. Дырки являются носителями тока. Электроны могут рекомбинировать с дырками (совершать квантовые переходы в незаполненные состояния, то есть дырки). Прежние заполненные состояния в этом случае освобождаются, то есть становятся дырками. Последние рекомбинируют с новыми электронами, вновь образуются дырки. В результате этих процессов устанавливается равновесная концентрация дырок, эта концентрация одинакова по всему объему проводника, если нет внешнего поля. Квантовый переход электрона сопровождается его перемещением против поля. Он уменьшает потенциальную энергию системы. Переход, связанный с перемещение в направлении поля увеличивает потенциальную энергию системы. Переходы против поля преобладают над переходами по полю, что значит, через полупроводник начнет течь ток в направлении приложенного электрического поля. В незамкнутом полупроводнике ток будет течь, пока электрическое поле не будет компенсировать внешнее поле. Конечный результат явления такой же, как если бы носителями тока были не электроны, а положительно заряженные дырки. Следовательно, различают электронную и дырочную проводимость полупроводников.

Истинными носителями тока в металлах и полупроводниках реальны электроны, дырки введены формально. Дырок, как реально существующих положительно заряженных частиц не существует. Однако, оказалось, что в электрическом поле дырки перемещаются так, как двигались бы при классическом рассмотрении положительно заряженные частицы. Из-за небольшой концентрации электронов в зоне проводимости, дырок в валентной зоне можно применять классическую статистику Больцмана.

Примечание 2

Проводимость полупроводников, и электронная, и дырочная не связана с наличием примесей. Она называется собственной электропроводностью полупроводников.

В идеально чистом полупроводнике без всяких примесей каждому освобожденному тепловым движением или светом электрону соответствовало бы образование одной дырки, то есть количество электронов и дырок, которые участвуют в создании тока, было бы одинаково.

Идеально чистые полупроводники в природе не существуют, изготовить из искусственно крайне сложно. Малые следы примесей качественным образом изменяют свойства полупроводников.

Примесная проводимость полупроводников

Электрическая проводимость полупроводников, которая вызвана наличием примесей атомов других химических элементов, называется примесной электрической проводимостью. Самые небольшие количества примесей могу существенно увеличивать проводимость полупроводников. В металлах, наблюдается обратное явление. Примеси всегда уменьшают проводимость металлов.

Увеличение проводимости при наличии примесей объясняют тем, что в полупроводниках появляются дополнительные энергетические уровни, которые находятся в запрещенной зоне полупроводника.

Донорные примеси

Пусть дополнительные уровни в запрещенной зоне появились около нижнего края зоны проводимости. В том случае, если интервал энергии, который отделяет дополнительные уровни энергии от зоны проводимости, мал в сравнении с шириной запрещенной зоны, то число электронов в зоне проводимости, следовательно, сама проводимость полупроводника увеличится. Примеси, которые поставляют электроны в зону проводимости, называют донорами (донорными примесями). Дополнительные энергоуровни, при этом, называют донорными уровнями.

Полупроводники, имеющие донорные примеси называют электронными (полупроводниками n-типа).

Акцепторные примеси

Пусть с введением примеси добавочные уровни возникают около верхнего края валентной зоны. В этом случае электроны из валентной зоны переходят на эти добавочные уровни. В валентной зоне при этом появляются дырки, так возникает дырочная электропроводность полупроводника. Такие примеси называют акцепторами (акцепторными примесями). Дополнительные уровни при этом называют акцепторными уровнями.

Полупроводники, имеющие акцепторные примеси называют дырочными (полупроводниками p-типа). Могут существовать смешанные полупроводники.

Каким видом проводимости обладает полупроводник (электронной или дырочной) судят по знаку эффекта Холла.

Процесс введения примесей называется легированием. При очень больших концентрациях примесных уровней может наблюдаться расщепление примесных уровней, в результате чего они могут перекрыть границы соответствующих энергетических зон.

Пример 1

Задание: Объясните, каким типом примеси могут служить атомы мышьяка, атомы бора в кристаллической решетке кремния?

Рассмотрим кремний и мышьяк. Кремний -- четырехвалентный атом, следовательно, атом кремния имеет четыре электрона. Мышьяк пятивалентен, значит, его атом содержит пять электронов. Пятый электрон может отщепиться от атома мышьяка из-за теплового движения. Положительный ион мышьяка может вытеснить из решетки один из атомов кремния, встав не его место. Так, между узлами решетки появится электрон проводимости. Следовательно, получается, что мышьяк является донорной примесью для кремния.

Рассмотрим бор, как примесь к кремнию. Наружная оболочка атома бора имеет три электрона. Атом бора может захватить недостающий четвертый электрон, из какого -- либо соседнего с ним места кристалла кремния. В этом месте появляется дырка, а появившийся отрицательный ион бора может вытеснить из кристаллической решетки атом кремния и занять его место. В кристалле кремния возникает дырочная проводимость. Бор -- акцепторная примесь.

Ответ: Мышьяк -- донорная примесь в решетке кремния, бор -- акцепторная примесь для кремния.

Пример 2

Задание: В термоэлементах в одних случаях ток в горячем спае течет от металла к полупроводнику, а в других от полупроводника к металлу, объясните, почему?

Именно различие между электронной и дырочной проводимостью полупроводников объяснятся процесс, описанный в условии задания.

В электронном полупроводнике скорость электронов в горячем конце больше, чем в холодном. Следовательно, электроны просачиваются (диффундируют) от горячего конца к холодному до тех пор, пока возникающее из-за перераспределения зарядов электрическое поле не останавливает поток диффундирующих электронов. После установления равновесия горячий конец, который потерял электроны, имеет положительный заряд, холодный конец, получил избыток электронов, следовательно, имеет отрицательный заряд. Значит, между горячим и холодным концами появляется разность потенциалов (положительная).

В дырочном полупроводнике происходит обратный процесс. Диффузия дырок проходит от горячего конца к холодному. При этом горячий конец получает отрицательный заряд, холодный конец заряжается положительно. Знак разности потенциалов между горячим и холодным концами отрицательный.

Проводимость химически чистых полупроводников называется собственной проводимостью, а сами полупроводники - собственными полупроводниками, В чистом полупроводнике число свободных электронов и дырок одинаково. Под действием приложенного к полупроводнику напряжения скорость направленного движения свободных электронов в нем больше, чем дырок. Поэтому сила тока электронной проводимостью I э больше силы тока дырочной проводимостью I д. Общий ток в полупроводнике I = I э + I д .

Собственная проводимость полупроводника увеличивается с повышением температуры. При неизменной температуре наступает динамическое равновесие между процессом образования дырок и рекомбинаций электронов и дырок. При таком условии количество электронов проводимости и дырок в единице объема сохраняется постоянным.

На проводимость полупроводников сильно влияет наличие в них примесей. При введении в полупроводник некоторых примесей можно получить сравнительно большое количество свободных электронов при малом числе "дырок" или, наоборот, большое количество "дырок" при очень малом числе свободных электронов. Проводимость проводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники - примесными полупроводниками. Примеси, легко отдающие свои электроны основному полупроводнику и, следовательно, увеличивающие в нем число свободных электронов, называются донорными (отдающими) примесями. В качестве таких примесей используются элементы, атомы которых имеют большее количество валентных электронов, чем атомы основного полупроводника. Так, по отношению к германию донорными являются примеси мышьяка, сурьмы.

Для получения в германии примеси мышьяка их смешивают и расплавляют. Германий - четырехвалентный элемент. Мышьяк - пятивалентный. При затвердевании в узле кристаллической решетки германия происходит замещение атома германия атомом мышьяка. Электроны последнего образуют прочные ковалентные связи с четырьмя соседними атомами германия (рис. 102, а). Оставшийся пятый валентный электрон мышьяка, не участвующий в парноэлектронных связях, продолжает двигаться вокруг атома мышьяка. Вследствие того что диэлектрическая проницаемость германия ε = 16 , сила притяжения электрона к ядру уменьшается, размеры орбиты электрона увеличиваются в 16 раз; энергия связи его с атомом уменьшается в 256 раз (т. е. в ε 2 раз), и энергии теплового движения становится достаточно для отрыва от атома этого электрона. Он начинает свободно перемещаться в решетке германия, превращаясь таким образом в электрон проводимости.

Атом мышьяка, находясь в узле кристаллической решетки германия, потеряв электрон, становится положительным ионом.

Он прочно связан с кристаллической решеткой германия, поэтому в образовании тока участия не принимает.

Энергия, необходимая для перевода электрона из валентной зоны в зону проводимости (см. рис. 96), называется энергией активизации. У примесных носителей тока она обычно во много раз меньше, чем у носителя тока основного полупроводника. Поэтому при незначительном нагревании, освещении освобождаются главным образом электроны атомов примеси. На месте ушедшего электрона в атоме донора образуется дырка. Однако перемещения электронов в дырки почти не наблюдается, т. е. дополнительная дырочная проводимость, создаваемая донором, очень мала. Это объясняется следующим. По причине небольшого количества атомов примеси ее электроны проводимости редко оказываются рядом с дыркой и не могут ее заполнить. А электроны атомов основного полупроводника хотя и находятся вблизи дырок, но не в состоянии их занять ввиду своего гораздо более низкого энергетического уровня.

Небольшое добавление донорной примеси делает число свободных электронов проводимости в тысячи раз больше, чем число свободных электронов проводимости в чистом полупроводнике при тех же условиях. В полупроводнике с донорной примесью основными носителями заряда являются электроны. полупроводниками n-типа .

Примеси, захватывающие электроны у основного полупроводника и, следовательно, увеличивающие в нем число дырок, называются акцепторными (принимающими) примесями. В качестве таких примесей используются элементы, атомы которых имеют меньшее количество валентных электронов, чем атомы основного полупроводника. Так, по отношению к германию акцепторными являются примеси индия, алюминия.

Для получения в германии примеси индия их смешивают и расплавляют. Германий - четырехвалентный элемент. Индий - трехвалентный. Для образования ковалентных связей с четырьмя ближайшими соседними атомами германия у атома индия не хватает одного электрона. Индий его заимствует у атома германия (рис. 102, б). Для этого электронам атомов германия нагреванием сообщается энергия, достаточная только для разрыва ковалентной связи, после чего освободившиеся электроны захватываются атомами индия. Будучи не свободными, эти электроны не участвуют в образовании тока. Атомы индия становятся отрицательными ионами, они прочно связаны с кристаллической решеткой германия, поэтому в образовании тока участия не принимают.

На месте ушедшего из атома германия электрона образуется дырка, которая является свободным носителем положительного заряда. Эта дырка может быть заполнена электроном А из соседнего атома германия и т. д. В полупроводнике с акцепторной примесью основными носителями заряда являются дырки. Такие полупроводники называются полупроводниками р-типа.

Таким образом, в отличие от собственной проводимости, осуществляющейся одновременно электронами и дырками, примесная проводимость полупроводника обусловлена в основном носителями одного знака: электронами в случае донорной примеси и дырками в случае акцепторной примеси. Эти носители заряда в примесном полупроводнике являются основными. Кроме них в таком полупроводнике содержатся неосновные носители: в электронном полупроводнике - дырки, в дырочном полупроводнике - электроны. Концентрация их значительно меньше концентрации основных носителей.

Полупроводниками называют класс веществ (твердых тел), у которых полностью занята электронами валентная зона, отделенная от зоны проводимости узкой (порядка 1 эВ) запрещенной зоной. Их электропроводность меньше электропроводности металлов, но больше электропроводности диэлектриков.

К полупроводникам относятся элементы (Si, Ge, As, Se, Te), химические соединения (оксиды, сульфиды, селениды), сплавы элементов различных групп.

Основным признаком, выделяющим полупроводники как особый класс веществ, является сильное влияние температуры и концентрации примесей на их электрическую проводимость.

Различают собственные и примесные полупроводники. Электропроводность чистых полупроводников (в которых совершенно отсутствуют примеси) называют собственной проводимостью.

К собственным полупроводникам относятся германий и кремний. Молекулярная структура кремния представлена на рис. 8.8, где:

Ядро и внутренние электронные оболочки;

Дырка, вакансия с отсутствующей связью;

Валентные электроны, образующие ковалентную связь.

У германия и кремния – одинаковая кристаллическая решетка: каждый атом окружен четырьмя атомами, находящимися в вершинах правильного тетраэдра. На наружной оболочке атома имеется по четыре валентных электрона, поэтому каждый атом образует четыре ковалентных связи с четырьмя ближайшими от него соседями.

На рис. 8.9 показана энергетическая структура электронов в полупроводнике. При Т=0 все уровни валентной зоны заняты, а уровень Ферми лежит в запрещенной зоне, отделяющей зону проводимости. При этом в зоне проводимости электронов нет. Для полупроводников характерно, что ширина запрещенной зоны составляет до 10 кТ. При комнатных температурах ²размытость² функции Ферми-Дирака перекрывает , и вероятность перехода электронов валентной зоны в зону проводимости не равна 0.

Таким образом, в полупроводниках (что их коренным образом отличает от диэлектриков) сравнительно небольшие энергетические воздействия, обусловленные нагревом или облучением, могут привести к отрыву некоторых электронов от своих атомов. В этом состоит механизм образования носителей в чистых полупроводниках.

При температуре T=0 K и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении температуры электроны с верхних уровней валентной зоны могут перейти на нижние уровни зоны проводимости. При наложении электрического поля электроны перемешаются против поля. В полупроводнике появляется электрический ток. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью, или проводимостью n - типа.

Из-за теплового перехода электронов в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место, дырку, может перейти электрон с соседнего уровня, а дырка появится в том месте, которое покинул электрон и т.д. Такой процесс заполнения дырок электронами равноценен перемещению дырки в направлении, противоположном перемещению электрона. В действительности дырки не перемещаются. Проводимость собственных полупроводников, обусловленная дырками (квазичастицами), называется дырочной проводимостью, или проводимостью p - типа.

Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне. Следовательно, если концентрация электронов проводимости и дырок равна соответственно n e и n p , то n e = n p .

Проводимость собственных полупроводников всегда является возбужденной, т.е. появляется только под действием внешних факторов (повышения температуры, облучения, сильных электрических полей и т.д.).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны. При переходе электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны E, что приводит к появлению в валентной зоне дырки. Энергия, затраченная на возникновение пары носителей тока, должна делится на две равные части. Следовательно, начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от которой возникает возбуждение электронов и дырок.

В физике твердого тела доказывается, что концентрация электронов в зоне проводимости

, (8.17)

где W 2 – энергия, соответствующая дну зоны проводимости;

W F – энергия Ферми;

T – термодинамическая температура;

C 1 – постоянная, зависящая от температуры и эффективной массы электрона проводимости.

Примечание. Эффективная масса – величина, имеющая размерность массы. Она характеризует динамические свойства электронов проводимости и дырок. Позволяет учитывать действие на электроны проводимости не только внешнего поля, но и внутреннего периодического поля кристалла, рассматривать их движение во внешнем поле как движение свободных частиц, не учитывая взаимодействие электронов проводимости с решеткой.

Концентрация дырок в валентной зоне

, (8.18)

где C 2 – постоянная, зависящая от температуры и эффективной массы дырок;

W 1 – энергия, соответствующая верхней границе валентной зоны. Энергия возбуждения в данном случае отсчитывается вниз от уровня Ферми, поэтому величины в экспоненциальном множителе разные.

Согласно тому что n e = n p , имеем

. (8.19)

Если эффективные массы электронов и дырок равны, то при данной температуре C 1 =C 2 и, следовательно,

. (8.20)

Таким образом, уровень Ферми в собственном полупроводнике действительно расположен в середине запрещенной зоны.

Так как для собственных полупроводников DW>>kT, то распределение Ферми-Дирака имеет вид

, (8.21)

где – среднее число фермионов в состоянии с энергией W i ;

m – химический потенциал.

При данных условиях распределение Ферми-Дирака переходит в распределение Максвелла-Больцмана:

, (8.22)

Таким образом, имеем:

. (8.23)

Заменив в формуле (8.23) (W - W F) = DW/2, получим

. (8.24)

Так как количество электронов, перешедших в зону проводимости, а следовательно, и количество образовавшихся дырок пропорционально , то удельная проводимость собственных полупроводников

где g o – постоянная, характерная для данного полупроводника.

Удельное электросопротивление полупроводников

Увеличение проводимости полупроводников с повышением температуры объясняется тем, что с повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости.

В полупроводниках, помимо процесса генерации электронов и дырок, возможен процесс их рекомбинации. Электроны могут переходить из зоны проводимости в валентную зону, отдавая решетке избыточную энергию, испуская кванты электромагнитного излучения. В результате для каждой температуры устанавливается определенное равновесие концентрации электронов и дырок, зависящее от температуры.

Скорость рекомбинации, т.е. число исчезающих в единицу времени электронно-дырочных пар, определяется свойствами полупроводника; кроме того, она пропорциональна концентрации электронов и дырок, так как чем больше число носителей заряда, тем вероятнее их встреча, завершающаяся рекомбинацией. Таким образом, скорость рекомбинации

«Физика - 10 класс»

Почему сопротивление проводников зависит от температуры?
Какие явления наблюдаются в состоянии сверхпроводимости?

Полупроводники - вещества, удельное сопротивление которых имеет промежуточное значение между удельным сопротивлением металлов (10 -6 -10 -8 Ом м) и удельным сопротивлением диэлектриков (10 8 -10 13 Ом м).

Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен, индий, мышьяк и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растёт, как у металлов (см. рис. 16.3), а, наоборот, чрезвычайно резко уменьшается (рис. 16.4).

Такое свойство присуще именно полупроводникам.

Из графика, изображённого на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведёт себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.


Строение полупроводников.


Для того чтобы включить транзисторный приёмник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придётся вникнуть в природу связей , удерживающих атомы полупроводникового кристалла друг возле друга.

Для примера рассмотрим кристалл кремния.

Кремний - четырёхвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырём. Схема структуры кристалла кремния изображена на рисунке (16.5).

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью . В образовании этой связи от каждого атома участвует по одному валентному электрону, электроны отделяются от атома, которому они принадлежат (коллективируются кристаллом), и при своём движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.

Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.

Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы цементирующим раствором, удерживающим кристаллическую решётку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.


Электронная проводимость.


При нагревании кремния кинетическая энергия частиц повышается и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторённые пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решётки, создавая электрический ток (рис. 16.6).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью .

При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/мл 3 . Это приводит к уменьшению сопротивления.


Дырочная проводимость.


При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном, которое называют дыркой .

В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).

Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Если напряжённость электрического поля в образце равна нулю, то перемещение дырок происходит беспорядочно и поэтому не создаёт электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок.

Направление движения дырок противоположно направлению движения электронов (рис. 16.7).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряжённости поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.

Итак, в полупроводниках имеются носители заряда двух типов электроны и дырки.

Проводимость, обусловленная движением дырок, называется дырочной проводимостью полупроводников.

Мы рассмотрели механизм проводимости чистых полупроводников.

Проводимость чистых полупроводников называют собственной проводимостью .


Примесная проводимость.


Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов: например, в германии при комнатной температуре n е = 3 10 13 см -3 . В то же время число атомов германия в 1 см 3 порядка 10 23 .

Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Проводимость полупроводников можно существенно увеличить, внедряя в них примесь. В этом случае наряду с собственной проводимостью возникает дополнительная - примесная проводимость .

Проводимость проводников, обусловленная внесением в их кристаллические решётки примесей (атомов посторонних химических элементов), называется примесной проводимостью .


Донорные примеси.


Добавим в кремний небольшое количество мышьяка. Атомы мышьяка имеют пять валентных электронов. Четыре из них участвуют в создании ковалентной связи данного атома с окружающими атомами кремния. Пятый валентный электрон оказывается слабо связанным с атомом. Он легко покидает атом мышьяка и становится свободным (рис. 16.8).

При добавлении одной десятимиллионной доли атомов мышьяка концентрация свободных электронов становится равной 10 16 см -3 . Это в тысячу раз больше концентрации свободных электронов в чистом полупроводнике.

Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными (отдающими) примесями .

Свободные электроны перемещаются по полупроводнику подобно тому, как перемещаются свободные электроны в металле.

Полупроводники, имеющие донорные примеси и потому обладающие большим числом электронов (по сравнению с числом дырок), называются полупроводниками n-типа (от английского слова negative - отрицательный).

В полупроводнике n-типа электроны являются основными носителями заряда, а дырки - неосновными .


Акцепторные примеси.


Если в качестве примеси использовать индий, атомы которого трёхвалентны, то характер проводимости полупроводника меняется. Для образования нормальных парноэлектронных связей с соседями атому индия недостаёт одного электрона, который он берёт у соседнего атома кристалла. В результате образуется дырка. Число дырок в кристалле равно числу атомов примеси (рис. 16.9).

Примеси в полупроводнике, создающие дополнительную концентрацию дырок, называют акцепторными (принимающими) примесями .

При наличии электрического поля дырки перемещаются направленно и возникает электрический ток, обусловленный дырочной проводимостью.

Полупроводники с преобладанием дырочной проводимости над электронной называют полупроводниками p-типа (от английского слова positive - положительный).

Основными носителями заряда в полупроводнике p-типа являются дырки, а неосновными - электроны.

Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией одного из носителей тока электронов или дырок. Эта особенность полупроводников открывает широкие возможности для их практического применения.

§ 3 Собственная проводимость полупроводников

  • Внутренняя структура полупроводников.

К полупроводникам относится большое количество веществ, которые занимают по своим электрическим свойствам промежуточное положение между проводниками и диэлектриками. Для полупроводников j=1 2 ¸ 1 0 - 8 См/м (j - удельная электропроводимость). Для проводников j = 1 4 ¸ 1 0 3 См/м; для диэлектриков j < 10 -12 См/м. Важнейшим свойством и признаком полупроводников является зависимость их электрических свойств от внешних условий Т , Е , р и т.д. Характерная особенность полупроводников заключается в уменьшении их удельного сопротивления с увеличением температуры. Для полупроводников характерно кристаллическое строение с ковалентной связью между атомами.

  • Собственная проводимость полупроводников.

Под действием внешних факторов некоторые валентные электроны атомов приобретает энергию, достаточную для освобождения от ковалентных связей.

Выход из ковалентной связи электрона на энергетической диаграмме соответствует переходу из валентной зоны в зону проводимости. При освобождении электрона из ковалентной связи в последней возникает как бы свободное место, обладающее элементарным положительным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой, а процесс образования пары получил название генерация зарядов . Дырка, обладая положительны зарядом, присоединяет к себе электрон соседней заполненной ковалентной связи. В результате этого восстанавливается одна связь (этот процесс называется рекомбинацией ) и разрушается соседняя. Тогда можно говорить о перемещении положительного заряда - дырки по кристаллу. Если на кристалл действует электрическое поле, движение электронов и дырок становится упорядоченным и в кристалле возникает электрический ток. При этом дырочную проводимость называют проводимостью р -типа (positive - положительный), а электронную проводимостью n -типа (negative - отрицательной).

В химически чистом кристалле полупроводник (число примесей 10 16 м -3), число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса заряда обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника.

j = j n + j p

j - плотность тока электронов (n ) и дырок (р ).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны. Так как энергия активации , равная ширине запрещенной зоны идет на перевод электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости и одновременно на появление дырки в валентной зоне. Т.е. энергия, затраченная на образование пары носителей тока делится на две равные части, и таким образом начало отсчета для каждого из этих процессов (переход электрона на рождение дырки) должно находится в середине запрещенной зоны.

Количество электронов, перешедших в зону проводимости и количество образовавшихся дырок ~

таким образом, удельная проводимость собственных полупроводников

γ - постоянная, определяемая видом вещества.

Т.е. с увеличением Т γ увеличивается, так как с точки зрения зонной теории возрастает число электронов, которые в следствии теплового возбуждения переходят в зону проводимости.

,

т.е.

По наклону линии lnγ можно определить ширину запрещенной зоны D E .

§ 4 Примесная проводимость полупроводников

В полупроводниках, содержащих примесь, электропроводимость слагается из собственной и примесной.

Проводимость , вызванная присутствием в кристалле полупроводника примесей из атомов с иной валентностью называется примесной. Примеси, вызывающие в полупроводнике увеличение свободных электронов, называются донорными, а вызывающие увеличение дырок - акцепторными .

Различное действие примесных атомов объясняется следующим образом. Предположим, что в кристалл германия (Ge 4+ ) атомы которого имеют 4 валентных электрона, введем пятивалентный мышьяк As 5+ . В этом случае атомы мышьяка своими 4-я из пяти валентными электронами вступают в связь. 5-й валентный электрон мышьяка окажется не связанным, т.е. становится свободным электроном. Полупроводник, электропроводимость которых повысилась благодаря образованию избытка свободных электронов при введении примеси, называются полупроводниками с электронной проводимостью (полупроводник n -типа), а примесь донорной (отдающей электрон).

Введение в 4-х валентный полупроводник 3-х валентного элемента, например (In 3+ ) индия приводит, наоборот, к избытку дырок над свободными электронами. В этом случае ковалентные связи не будут полностью завершены и образовавшиеся дырки могут перемещаться по кристаллу, создавая дырочную проводимость. Полупроводники, электропроводимость которых обусловлена в основном движением дырок, называется полупроводниками с дырочной проводимостью или полупроводниками р -типа, а примесь - акцепторной (захватывающие электрон из ковалентной связи или из валентной зоны). Энергетические уровни этих примесей называются акцепторными уровнями - расположены над валентной зоной.

Энергетические уровни донорных примесей называются донорными уровнями - расположены под нижним уровнем зоны проводимости.

В примесных полупроводниках носители заряда бывают основными (электроны в проводнике n -типа) и не основными (дырки в полупроводнике р -типа, электроны в полупроводнике n -типа).

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми Е F . В полупроводнике n -типа при Т = 0 К Е F расположен посередине между дном зоны проводимости и донорным уровнем. С возрастанием Т все большее число электронов переходит с донорного уровня в зону проводимости, но из-за теплового возбуждения часть электронов из валентной зоны переходит в зону проводимости. Поэтому с возрастанием Т уровень Ферми смещается вниз к середине запрещенной зоны.

У полупроводников р -типа при Т = 0 К , Е F посередине между акцепторным уровнем и потолком валентной зоны. С возрастанием Т Е F смещается к середине запрещенной зоны.

Зависимость проводимости полупроводников от температуры имеет вид, показанный на рисунке (подробнее смотрите лабораторную работу 8.6.).