Рефераты Изложения История

Парадоксы теории множеств и их философская интерпретация. Адольф Френкель

Кантор George Cantor Карьера: Математик
Рождение: Россия» Санкт-Петербург, 3.3.1845 - 6.1
Георг Кантор - великий немецкий ученый, математик. Родился 3 марта 1845 года в России.Георг Кантор известен как создатель "теории множеств", автор теоремы Кантора. Кроме того, Георг Кантор определил понятия кардинальных и порядковых чисел и их арифметику, ввёл понятие взаимно-однозначного соответствия между элементами множеств, дал определения бесконечного и вполне-упорядоченного множеств и доказал, что действительных чисел больше, чем натуральных и т.д.

Семья Георга Кантора (1845-1918) переехала из России в Германию, когда он ещё был ребенком. Именно там он начал штудировать математику. Защитив в 1868 г. диссертацию по теории чисел, он получил уровень доктора в Берлинском университете. В 27 лет Кантор опубликовал статью, содержавшую общее вывод крайне сложной математической проблемы - и идеи, выросшие позднее в его знаменитую теорию - теорию множеств. В 1878 г. он ввел и сформулировал важный строй новых понятий, дал определение множества и первое определение континуума, развил принципы сравнивания множеств. Систематическое изложение принципов своего учения о бесконечности он дал в 1879-1884 гг.

Настойчивое тяготение Кантора разобрать бесконечность как нечто актуально данное было для того времени здоровенный новостью. Кантор мыслил свою теорию как совсем новое исчисление бесконечного, "трансфинитную" (то есть "сверхконечную") математику. По его идее, создание такого исчисления должно было изготовить переворот не только в математике, но и в метафизике и теологии, которые интересовали Кантора еле-еле ли не больше, чем собственно научные исследования. Он был единственным математиком и философом, тот, что считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет взметать математиков, а вдогонку за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил существование. Ученый решительно верил, что он избран Богом, чтобы произвести большой переворот в науке, и эта его вера поддерживалась мистическими видениями. Титаническая попытка Георга Кантора, хотя вообще-то, закончилась странно: в теории были обнаружены тяжко преодолимые парадоксы, ставящие под колебание и значимость любимой идеи Кантора - "лестницы алефов", последовательного ряда трансфинитных чисел. (Эти числа обширно известны в принятом им обозначении: в виде буквы алеф - первой буквы еврейского алфавита.)

Неожиданность и своеобразие его точки зрения, несмотря на все преимущества подхода, обусловили резкое неприятие его работ большей частью ученых. Десятилетиями он вел упорную борьбу без малого со всеми современниками-философами и математиками, отрицавшими законность построения математики на фундаменте актуально-бесконечного. Некоторые приняли это как вызов, ибо Кантор предполагал наличие множеств или последовательностей чисел, имеющих бесконечно навалом элементов. Знаменитый математик Пуанкаре назвал теорию трансфинитных чисел "болезнью", от которой математика должна когда-нибудь излечиться. Л. Кронекер - педагог Кантора и единственный из самых авторитетных математиков Германии - более того нападал на Кантора, называя его "шарлатаном", "ренегатом" и "растлителем молодежи"! Только к 1890 г., когда были получены приложения теории множеств к анализу и геометрии, концепция Кантора получила признание в качестве самостоятельного раздела математики.

Важно подметить, что Кантор способствовал созданию профессионального объединения - Немецкого математического общества, которое содействовало развитию математики в Германии. Он считал, что его научная карьера пострадала от предубежденного отношения к его трудам, и надеялся, что независимая организация позволит молодым математикам независимо судить о новых идеях и заняться их разработкой. Он же был инициатором созыва первого Международного математического конгресса в Цюрихе.

Кантор несладко переживал противоречия своей теории и сложности с ее принятием. С 1884 г. он страдал глубокой депрессией и сквозь немного лет отошел от научной деятельности. Умер Кантор от сердечной недостаточности в психиатрической лечебнице в Галле.

Кантор доказал наличие иерархии бесконечностей, каждая из которых "больше" предшествующей. Его концепция трансфинитных множеств, пережив годы сомнений и нападок, в конце концов, выросла в грандиозную революционизирующую силу в математике 20 в. и стала ее краеугольным камнем.

По образованию я физик-теоретик, однако имею неплохую математическую базу. В магистратуре одним из предметов была философия, необходимо было выбрать тему и сдать по ней работу. Поскольку большинство вариантов не единожды было обмусолено, то решил выбрать что-то более экзотическое. На новизну не претендую, просто получилось аккумулировать всю/почти всю доступную литературу по этой теме. Философы и математики могут кидаться в меня камнями, буду лишь благодарен за конструктивную критику.

P.S. Весьма «сухой язык», но вполне читабельно после университетской программы. По большей части определения парадоксов брались из Википедии (упрощённая формулировка и готовая TeX-разметка).

Введение

Как сама теория множеств, так и парадоксы, ей присущие, появились не так уж и давно, чуть более ста лет назад. Однако за этот период был пройден большой путь, теория множеств так или иначе фактически стала основой большинства разделов математики. Парадоксы же её, связанные с бесконечностью Кантора, были успешно объяснены буквально за половину столетия.

Следует начать с определения.

Что есть множество? Вопрос достаточно простой, ответ на него вполне интуитивен. Множество это некий набор элементов, представляемый единым объектом. Кантор в своей работе Beiträge zur Begründung der transfiniten Mengenlehre даёт определение: под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M). Как видим, суть не изменилась, разница лишь в той части, которая зависит от мировоззрения определяющего. История же теории множеств как в логике так и в математике весьма противоречива. Фактически начало ей положил Кантор в XIX веке, далее Рассел и остальные продолжили работу.

Парадоксы (логики и теории множеств) - (греч. - неожиданный) - формально-логические противоречия, которые возникают в содержательной множеств теории и формальной логике при сохранении логической правильности рассуждения. Парадоксы возникают тогда, когда два взаимоисключающих (противоречащих) суждения оказываются в равной мере доказуемыми. Парадоксы могут появиться как в пределах научной теории, так и в обычных рассуждениях (например, приводимая Расселом перифраза его парадокса о множестве всех нормальных множеств: «Деревенский парикмахер бреет всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя?»). Поскольку формально-логическое противоречие разрушает рассуждение как средство обнаружения и доказательства истины (в теории, в которой появляется парадокс, доказуемо любое, как истинное, так и ложное, предложение), возникает задача выявления источников подобных противоречий и нахождения способов их устранения. Проблема философского осмысления конкретных решений парадоксов - одна из важных методологических проблем формальной логики и логических оснований математики.

Целью данной работы является изучение парадоксов теории множеств как наследников античных антиномий и вполне логичных следствий перехода к новому уровню абстракции - бесконечности. Задача - рассмотреть основные парадоксы, их философскую интерпретацию.

Основные парадоксы теории множеств

Брадобрей бреет только тех людей, которые не бреются сами. Бреет ли он себя?
Продолжим кратким экскурсом в историю.

Некторые из логических парадоксов были известны с античных времён, однако по причине того, что математическая теория ограничивалась одной лишь арифметикой и геометрией, соотнести их с теорией множеств было невозможно. В XIX веке ситуация изменилась коренным образом: Кантор в своих работах вышел на новый уровень абстракции. Он ввёл понятие бесконечности, создав тем самым новый раздел математики и позволив тем самым сравнивать различные бесконечности с помощью понятия «мощность множества» . Однако тем самым он породил множество парадоксов. Самым первым является так называемый парадокс Бурали-Форти . В математической литературе встречаются различные формулировки, опирающиеся на разную терминологию и предполагаемый набор известных теорем. Вот одно из формальных определений.

Можно доказать, что если x - произвольное множество порядковых чисел, то множество-сумма есть порядковое число, большее или равное каждому из элементов x . Предположим теперь, что - множество всех порядковых чисел. Тогда - порядковое число, большее или равное любому из чисел в . Но тогда и - порядковое число, причём уже строго большее, а значит, и не равное любому из чисел в . Но это противоречит условию, по которому - множество всех порядковых чисел.

Сущность же парадокса в том, что при образовании множества всех порядковых чисел образуется новый порядковый тип, которого ещё не было среди «всех» трансфинитных порядковых чисел, существовавших до образования множества всех порядковых чисел. Этот парадокс был обнаружен самим Кантором, независимо открыт и опубликован итальянским математиком Бурали-Форти, ошибки же последнего были исправлены Расселом, после чего формулировка приобрела окончательный вид .

Среди всех попыток избежать подобных парадоксов и в какой-то мере попробовать их объяснить наибольшего внимания заслуживает идея уже упомянутого Рассела. Он предложил исключить из математики и логики импредикативные предложения, в которых определение элемента множества зависит от последнего, что и вызывает парадоксы. Правило звучит так: «никакое множество С не может содержать элементов m, определяемых лишь в терминах множества С, а так же элементов n, предполагающих в своём определении это множество» . Подобное ограничение определения множества позволяет избежать парадоксов, но при этом значительно сужает область его применения в математике. Вдобавок этого недостаточно для объяснения их природы и причин появления, коренящихся в дихотомии мышления и языка, в особенностях формальной логики . В какой-то мере в данном ограничении можно проследить аналогию с тем, что в более поздний период когнитивные психологи и лингвисты начали называть «категоризацией основного уровня»: определение сведено к наиболее легкой для понимания и изучения концепцией.

Предположим, что множество всех множеств существует. В этом случае справедливо , то есть всякое множество t является подмножеством V. Но из этого следует - мощность любого множества не превосходит мощности V. Но в силу аксиомы множества всех подмножеств, для V, как и любого множества, существует множество всех подмножеств , и по теореме Кантора , что противоречит предыдущему утверждению. Следовательно, V не может существовать, что вступает в противоречие с «наивной» гипотезой о том, что любое синтаксически корректное логическое условие определяет множество, то есть что для любой формулы A, не содержащей y свободно. Замечательное доказательство отсутствия подобных противоречий на основе аксиоматизированной теории множеств Цермело-Френкеля приводится у Поттера .

Оба вышеуказанных парадокса с логической точки зрения идентичны «Лжецу» либо «Брадобрею»: высказываемое суждение обращено не только на нечто объективное по отношению к нему, но и само на себя. Однако следует обращать внимание не только на логическую сторону, но и на понятие бесконечности, которое тут наличествует. В литературе ссылаются на работу Пуанкаре, в которой он пишет: «вера в существование актуальной бесконечности… делает необходимым эти непредикативные определения"" .
В целом же имеют место основные моменты :

  • в данных парадоксах нарушается правило чётко разделять „сферы“ предиката и субъекта; степень смешения близка к подмене одного понятия другим;
  • обычно в логике предполагается, что в процессе рассуждения субъект и предикат сохраняют свой объём и содержание, в данном же случае происходит
    переход из одной категории в другую, что даёт в результате несоответствие;
  • наличие слова „все“ имеет смысл для конечного числа элементов, в случае же бесконечного их количества возможно наличие такого, которое
    для определения себя потребует определение множества;
  • нарушаются основные логические законы:
    • закон тождества нарушается тогда, когда обнаруживается нетождественность себе субъекта и предиката;
    • закон противоречия - когда с одинаковым правом выводятся два противоречащих друг другу суждения;
    • закон исключённого третьего - когда это третье приходится признавать, а не исключать, поскольку ни первое, ни второе не могут быть признаны одно без другого, т.к. они оказываются одинаково правомерными.
Третий парадокс носит имя Рассела . Один из вариантов определения приведён далее.
Пусть K - множество всех множеств, которые не содержат себя в качестве своего элемента.Содержит ли K само себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K - противоречие.Если нет - то, по определению K, оно должно быть элементом K - вновь противоречие. Данное утверждение логически выводится из парадокса Кантора, что показывает их взаимосвязь. Однако философская сущность проявляется более чётко, поскольку „самодвижение"" понятий происходит прямо “на наших глазах» .

Парадокс Тристрама Шенди:
В романе Стерна «Жизнь и мнения Тристрама Шенди, джентльмена» герой обнаруживает, что ему потребовался целый год, чтобы изложить события первого дня его жизни, и еще один год понадобился, чтобы описать второй день. В связи с этим герой сетует, что материал его биографии будет накапливаться быстрее, чем он сможет его обработать, и он никогда не сможет ее завершить. «Теперь я утверждаю, - возражает на это Рассел, - что если бы он жил вечно и его работа не стала бы ему в тягость, даже если бы его жизнь продолжала быть столь же богатой событиями, как вначале, то ни одна из частей его биографии не осталась бы ненаписанной».
Действительно, события n-го дня Шенди мог бы описать за n-й год и, таким образом, в его автобиографии каждый день оказался бы запечатленным.

Иначе говоря, если бы жизнь длилась бесконечно, то она насчитывала бы столько же лет, сколько дней.

Рассел проводит аналогию между этим романом и Зеноном с его черепахой. По его мнению решение лежит в том, что целое эквивалентно его части в бесконечности. Т.е. к противоречию приводит только «аксиома здравого смысла» . Однако же разрешение проблемы лежит в области чистой математики. Очевидно, что имеется два множества - года и дни, между элементами которых установлено взаимно-однозначное соответствие - биекция. Тогда при условии бесконечной жизни главного героя имеется два бесконечных равномощных множества, что, если рассматривать мощность как обобщение понятия количества элементов в множестве, разрешает парадокс.

Парадокс (теорема) Банаха-Тарского или парадокс удвоения шара - теорема в теории множеств, утверждающая, что трёхмерный шар равносоставлен двум своим копиям.
Два подмножества евклидова пространства называются равносоставленными, если одно можно разбить на конечное число частей, передвинуть их, и составить из них второе.
Более точно, два множества A и B являются равносоставленными, если их можно представить как конечное объединение непересекающихся подмножеств так, что для каждого i подмножество конгруэнтно .

Если же пользоваться теоремой выбора, то определение звучит так:
Аксиома выбора подразумевает, что существует разбиение поверхности единичной сферы на конечное количество частей, которые преобразованиями трёхмерного Евклидова пространства, не меняющими форму этих составляющих, могут быть собраны в две сферы единичного радиуса.

Очевидно, что при требовании для данных частей быть измеримыми, данное постоение неосуществимо. Известный физик Ричард Фейнман в своей биографии рассказывал, как в своё время у него получилось победить в споре о разбиении апельсина на конечное количество частей и пересоставлении его .

В определённых моментах этот парадокс используется для опровержения аксиомы выбора, однако проблема в том, что то, что мы считаем элементарной геометрией, - несущественно. Те понятия, которые мы считаем интуитивными, должны быть расширены до уровня свойств трансцендентных функций .

Чтобы и дальше ослабить уверенность тех, кто считает аксиому выбора неверной, следует упомянуть теорему Мазуркевича и Серпинского, которая утверждает, что существует непустое подмножество Е Евклидовой плоскости, которое имеет два непересекающихся подмножества, каждое из которых может быть разбито на конечное количество частей, так что их можно перевести изометриями в покрытие множества Е.
При этом доказательство не требует использования аксиомы выбора.
Дальнейшие же построения на основе аксиомы определённости дают разрешение парадокса Банаха-Тарского, но не представляют такого интереса .

  • Парадокс Ришара: требуется назвать «наименьшее число, не названное в этой книге». Противоречие в том, что с одной стороны, это можно сделать, так как есть наименьшее число, названное в этой книге. Исходя из него, можно назвать и наименьшее неназванное. Но тут возникает проблема: континуум является несчётным, между двумя любыми числами можно вставить ещё бесконечное множество промежуточных чисел. С другой стороны, если бы мы могли назвать это число, оно автоматически бы перешло из класса неупомянутых в книге, в класс упомянутых .
  • Парадокс Греллинга-Нильсона: слова либо знаки могут обозначать какое-либо свойство и при этом иметь его или нет. Самая тривиальная формулировка звучит так: является ли слово «гетерологичный» (что означает «неприменимый к самому себе»), гетерологичным?.. Весьма схож с парадоксом Рассела в связи с наличием диалектического противоречия: нарушается двойственность формы и содержания. В случае со словами, имеющими высокий уровень абстракции, невозможно решить, являются ли эти слова гетерологичными .
  • Парадокс Сколема: используя теорему Гёделя о полноте и теорему Лёвенхейма-Сколема получаем, что аксиоматическая теория множеств остаётся истинной и тогда, когда будет предполагаться (иметься) для её интерпретации только счётная совокупность множеств. В то же время
    аксиоматическая теория включает в себя уже упомянутую теорему Кантора, что приводит нас к несчётным бесконечным множествам.

Разрешение парадоксов

Создание теории множеств породило то, что считают третьим кризисом математики, который до сих пор не был разрешён удовлетворительно для всех .
Исторически сложилось, что первым подходом был теоретико-множественный. Он основывался на использовании актуальной бесконечности, когда считалось, что любая бесконечная последовательность является завершённой в бесконечности. Идея заключалась в том, что в теории множеств часто приходилось оперировать множествами, которые могли являться части других, более обширных множеств. Успешные действия в таком случае были возможны лишь в одном случае: данные множества (конечные и бесконечные) завершены. Определённый успех был очевиден: аксиоматическая теория множеств Цермело-Френкеля, целая школа математики Николя Бурбаки, которая существует уже больше половины столетия и до сих пор вызывает множество критики.

Логицизм был попыткой свести всю известную математику к терминам арифметики, а потом термины арифметики свести к понятиям математической логики. Вплотную этим занялся Фреге, однако после окончания работы над трудом, он вынужден был указать о своей несостоятельности, после того, как Рассел указал на имеющиеся в теории противоречия. Тот же Рассел, как уже был упомянуто ранее, попытался исключить использование импредикативных определений с помощью «теории типов». Однако его понятия множества и бесконечности, а так же аксиома сводимости оказались нелогичными. Основной проблемой было то, что не учитывались качественные различия между формальной и математической логикой, а так же наличие лишних понятий, в том числе и интуитивного характера.
В итоге теория логицизма не смогла устранить диалектических противоречий парадоксов, связанных с бесконечностью. Имели место лишь принципы и методы, которые позволяли избавиться хотя бы от непредикативных определений. В свох же рассуждениях Рассел был наследником Кантора

В конце XIX - начале XX в. распространение формалистической точки зрения на математику было связано с развитием аксиоматического метода и той программой обоснования математики, которую выдвинул Д. Гильберт. На степень важности этого факта указывает то, что первой проблемой из двадцати трёх, которые он поставил перед математическим сообществом, была проблема бесконечности. Формализация была необходима для доказательства непротиворечивости классической математики, «исключив при этом из неё всю метафизику». Учитывая средства и методы, которыми пользовался Гильберт, его цель оказалась принципиально невыполнимой, но его программа имела огромное влияние на все последующее развитие оснований математики. Гильберт достаточно долго работал над этой проблемой, построив первоначально аксиоматику геометрии. Поскольку решение проблемы оказалось достаточно успешным, он решил применить аксиоматический метод к теории натуральных чисел. Вот что он писал в связи с этим: «Я преследую важную цель: именно я хотел бы разделаться с вопросами обоснования математики как таковыми, превратив каждое математическое высказывание в строго выводимую формулу.» От бесконечности при этом планировалось избавиться с помощью сведения её к некому конечному числу операций. Для этого он обращался к физике с её атомизмом, дабы показать всю несостоятельность бесконечных величин. Фактически Гильберт поставил вопрос о соотношении теории и объективной реальности.

Более или менее полное представление о финитных методах дает ученик Гильберта Ж. Эрбран. Под финитными рассуждениями он понимает такие рассуждения, которые удовлетворяют следующим условиям: логические парадоксы " - всегда рассматривается лишь конечное и определенное число предметов и функций;

Функции имеют точное определение, и это определение позволяет нам вычислить их значение;

Никогда не утверждается «Этот объект существует», если не известен способ его построения;

Никогда не рассматривается множество всех предметов X какой-либо бесконечной совокупности;

Если известно, что какое-либо рассуждение или теорема верны для всех этих X, то это означает, что это общее рассуждение можно повторить для каждого конкретного X, причем само это общее рассуждение следует рассматривать только как образец для проведения таких конкретных рассуждений."

Однако в момент последней публикации в этой области Гёдель уже получил свои результаты, в сущности опять обнаружил и утвердил наличие диалектики в процессе познания. По сути своей дальнейшее развитие математики продемонстрировало несостоятельность программы Гильберта.

Что же, собственно, доказал Гёдель? Можно выделить три основных результата:

1. Гёдель показал невозможность математического доказательства непротиворечивости любой системы, достаточно обширной, чтобы включать в себя всю арифметику, доказательства, которое не использовало бы каких-либо иных правил вывода, кроме тех, что имеются в самой данной системе. Такое доказательство, которое использует более мощное правило вывода, может оказаться полезным. Но если эти правила вывода сильнее логических средств арифметического исчисления, то уверенности в непротиворечивости используемых в доказательстве допущений не будет. Во всяком случае, если используемые методы не будут финитистскими, то программа Гильберта окажется невыполнимой. Гёдель как раз и показывает несостоятельность расчетов на нахождение финитистского доказательства непротиворечивости арифметики.
2. Гёдель указал на принципиальную ограниченность возможностей аксиоматического метода: система Principia Mathematica, как и всякая иная система, с помощью которой строится арифметика, существенно неполна, т. е. для любой непротиворечивой системы арифметических аксиом имеются истинные арифметические предложения, которые не выводятся из аксиом этой системы.
3. Теорема Гёделя показывает, что никакое расширение арифметической системы не может сделать ее полной, и даже если мы наполним ее бесконечным множеством аксиом, то в новой системе всегда найдутся истинные, но не выводимые средствами этой системы положения. Аксиоматический подход к арифметике натуральных чисел не в состоянии охватить всю область истинных арифметических суждений, и то, что мы понимаем под процессом математического доказательства, не сводится к использованию аксиоматического метода. После теоремы Гёделя стало бессмысленно рассчитывать, что понятию убедительного математического доказательства можно будет придать раз и навсегда очерченные формы.

Последним в этой череде попыток объяснить теорию множеств был интуиционизм.

Он прошел ряд этапов в своей эволюции - полуинтуиционизм, собственно интуиционизм, ультраинтуиционизм. На разных этапах математиков волновали разные проблемы, но одной из основных проблем математики является проблема бесконечности. Математические понятия бесконечности, непрерывности служили предметом философского анализа с момента их появления (идеи атомистов, апории Зенона Элейского, инфинитезимальные методы в античности, исчисление бесконечно малых в Новое время и пр.). Наибольшие споры вызывало применение различных видов бесконечности (потенциальной, актуальной) как математических объектов и их интерпретация. Все эти проблемы, на наш взгляд, были порождены более глубокой проблемой - о роли субъекта в научном познании. Дело в том, что состояние кризиса в математике порождено эпистемологической неопределенностью соизмерения мира объекта (бесконечности) и мира субъекта. Математик как субъект имеет возможность выбора средств познания - или потенциальной, или актуальной бесконечности. Применение потенциальной бесконечности как становящейся, дает ему возможность осуществлять, конструировать бесконечное множество построений, которые можно надстраивать над конечными, не имея конечного шага, не завершая построение, оно только возможно. Применение актуальной бесконечности дает ему возможность работать с бесконечностью как с уже осуществимой, завершенной в своем построении, как актуально данной одновременно.

На этапе полуинтуиционизма проблема бесконечности еще не была самостоятельной, а была вплетена в проблему построения математических объектов и способов его обоснования. Полуинтуиционизм А. Пуанкаре и представителей парижской школы теории функций Бэра, Лебега и Бореля был направлен против принятия аксиомы свободного выбора, с помощью которой доказывается теорема Цермело, утверждавшая, что всякое множество можно сделать вполне упорядоченным, но без указания теоретического способа определения элементов любого подмножества искомого множества. Нет способа построения математического объекта, нет и самого математического объекта. Математики считали, что наличие или отсутствие теоретического способа построения последовательности объектов исследования может служить основой обоснования или опровержения этой аксиомы. В российском варианте полуинтуиционистская концепция в философских основаниях математики получила развитие в таком направлении, как эффективизм, развиваемый Н.Н. Лузиным. Эффективизм представляет собой оппозицию к основным абстракциям учения множества Кантора о бесконечном - актуальности, выбора, трансфинитной индукции и др.

Для эффективизма гносеологически более ценными абстракциями является абстракция потенциальной осуществимости, чем абстракция актуальной бесконечности. Благодаря этому становится возможным введение понятия о трансфинитных ординалах (бесконечных порядковых числах) на основе эффективного понятия о росте функций. Гносеологическая установка эффективизма для отображения непрерывного (континуума) опиралась на дискретные средства (арифметики) и созданную Н.Н.Лузиным дескриптивную теорию множеств (функций). Интуиционизм голландца Л. Э. Я. Брауэра, Г. Вейля, А. Гейтинга в качестве традиционного объекта исследования видит свободно становящиеся последовательности различных видов. На этом этапе, решая собственно математические проблемы, в том числе о перестройке всей математики на новой основе, интуиционисты подняли философский вопрос о роли математика как познающего субъекта. Каково его положение, где он более свободен и активен в выборе средств познания? Интуиционисты первыми (и на этапе полуинтуиционизма) стали критиковать концепцию актуальной бесконечности, канторовскую теорию множеств, усмотрев в ней ущемление возможностей субъекта влиять на процесс научного поиска решения конструктивной задачи. В случае использования потенциальной бесконечности субъект себя не обманывает, так как для него идея потенциальной бесконечности интуитивно значительно яснее, чем идея актуальной бесконечности. Для интуициониста объект считается существующим, если он дан непосредственно математику или известен метод его построения, конструирования. Субъект в любом случае может приступить к процессу достраивания ряда элементов своего множества. Непостроенный объект для интуиционистов не существует. В то же время субъект, работающий с актуальной бесконечностью, будет лишен этой возможности и будет чувствовать двойную уязвимость принятой позиции:

1) никогда нельзя осуществить это бесконечное построение;
2) он принимает решение оперировать с актуальной бесконечностью как с конечным объектом и в этом случае теряет свою специфику понятия бесконечности. Интуиционизм сознательно ограничивает возможности математика тем, что тот может осуществлять построение математических объектов исключительно посредством таких средств, которые хотя и получаемы с помощью абстрактных понятий, но эффективны, убедительны, доказуемы, функционально конструктивны именно практически и сами интуитивно ясны как конструкции, построения, надежность которых на практике не вызывает никаких сомнений. Интуиционизм, опираясь на понятие потенциальной бесконечности и конструктивные методы исследования, имеет дело с математикой становления, теория множеств относится к математике бытия.

Для интуициониста Брауэра как представителя математического эмпиризма логика вторична, он критикует ее и закон исключённого третьего.

В своих отчасти мистических работах он не отрицает наличие бесконечности, однако не допускает её актуализации, лишь потенциализацию. Главное для него - интерпретация и обоснование практически используемых логических средств и математических рассуждений. Принятое интуиционистами ограничение преодолевает неопределенность использования понятия бесконечности в математике и выражает стремление преодолеть кризис в основании математики.

Ультраинтуиционизм (А.Н. Колмогоров, А.А.Марков и др.) - последняя стадия развития интуиционизма, на которой модернизируются, существенно дополняются и преобразуются основные его идеи, не изменяя его сущности, но преодолевая недостатки и усиливая позитивные стороны, руководствуясь критериями математической строгости. Слабостью подхода интуиционистов было узкое понимание роли интуиции как единственного источника обоснования правильности и эффективности математических методов. Принимая «интуитивную ясность» в качестве критерия истинности в математике, интуиционисты методологически обедняли возможности математика как субъекта познания, сводили его деятельность лишь к мыслительным операциям на основе интуиции и не включали практику в процесс математического познания. Ультраинтуиционистская программа обоснования математики является российским приоритетом. Поэтому отечественные математики, преодолевая ограниченность интуиционизма, принимали действенной методологию материалистической диалектики, признающей человеческую практику источником формирования как математических понятий, так и математических методов (умозаключений, построений). Проблему существования математических объектов ультраинтуиционисты решали, опираясь уже не на неопределяемое субъективное понятие интуиции, а на математическую практику и конкретный механизм построения математического объекта - алгоритм, выражаемый вычислимой, рекурсивной функцией.

Ультраинтуиционизм усиливает достоинства интуиционизма, заключающиеся в возможности упорядочивания и обобщения приемов решения конструктивных проблем, употребляемых математиками любого направления. Поэтому интуиционизм последней стадии (ультраинтуиционизм) близок конструктивизму в математике. В гносеологическом аспекте основные идеи и принципы ультраинтуиционизма таковы: критика классической аксиоматики логики; использование и значительное усиление (по явному указанию А.А. Маркова) роли абстракции отождествления (мысленного отвлечения от несходных свойств предметов и одновременного вычленения общих свойств предметов) как способа построения и конструктивного понимания абстрактных понятий, математических суждений; доказательство непротиворечивости непротиворечивых теорий. В формальном аспекте применение абстракции отождествления оправдывается тремя ее свойствами (аксиомами) равенства - рефлексивности, транзитивности и симметрии.

Для решения основного противоречия в математике по проблеме бесконечности, породившего кризис ее оснований, на этапе ультраинтуиционизма в работах А.Н. Колмогорова были предложены пути выхода из кризиса посредством решения проблемы отношений между классической и интуиционистской логикой, классической и интуиционистской математикой. Интуиционизм Брауэра в целом отрицал логику, но так как любой математик не может обойтись без логики, в интуиционизме все-таки сохранилась практика логических рассуждений, допускались некоторые принципы классической логики, имеющей в качестве своей базы аксиоматику. С.К. Клини, Р. Весли даже отмечают, что интуиционистскую математику можно описать в виде некоторого исчисления, а исчисление является способом организации математического знания на основах логики, формализации и ее формы - алгоритмизации. Новый вариант соотношения логики и математики в рамках интуиционистских требований к интуитивной ясности суждений, особенно тех, которые включали отрицание, А.Н. Колмогоров предложил следующим образом: интуиционистскую логику, тесно связанную с интуиционистской математикой, он представил в форме аксиоматического импликативного минимального исчисления высказываний и предикатов. Тем самым ученый представил новую модель математического знания, преодолевающую ограниченность интуиционизма в признании лишь интуиции как средства познания и ограниченность логицизма, абсолютизирующего возможности логики в математике. Эта позиция позволила в математической форме продемонстрировать синтез интуитивного и логического как основы гибкой рациональности и ее конструктивной эффективности.

Выводы. Таким образом, эпистемологический аспект математического познания позволяет оценить революционные изменения на этапе кризиса оснований математики на рубеже XIX-XX вв. с новых позиций в понимании процесса познания, природы и роли субъекта в нем. Гносеологический субъект традиционной теории познания, соответствующий периоду господства теоретико-множественного подхода в математике, - это абстрактный, неполный, «частичный» субъект, представленный в субъектно-объектных отношениях, оторванный абстракциями, логикой, формализмом от действительности, рационально, теоретически познающий свой объект и понимаемый как зеркало, точно отражающее и копирующее действительность. По сути, субъект исключался из познания как реального процесса и результата взаимодействия с объектом. Выход интуиционизма на арену борьбы философских направлений в математике привел к новому пониманию математика как субъекта познания - человека познающего, философская абстракция которого должна быть выстроена как бы заново. Математик предстал как эмпирический субъект, понимаемый уже как целостный реальный человек, включающий все те свойства, от которых отвлекались в гносеологическом субъекте, - эмпирическую конкретность, изменчивость, историчность; это действующий и познающий в реальном познании, творческий, интуитивный, изобретательный субъект. Философия интуиционистской математики стала базой, фундаментом современной эпистемологической парадигмы, построенной на концепции гибкой рациональности, в которой человек - это цельный (целостный) субъект познания, обладающий новыми познавательными качествами, методами, процедурами; он синтезирует свою как абстрактно-гносеологическую и логико-методологическую природу и форму, так и одновременно получает экзистенциально-антропологическое и «историко-метафизическое» осмысление.

Важным моментом так же является интуиция в познании и, в частности, в образовании математических понятий. Опять же идёт борьба с философией, попытки исключить закон исключённого третьего, как не имеющий смысла в математике и пришедший в неё из философии. Однако же наличие излишнего акцента на интуицию и отстутствие чётких математических обоснований не позволили перевести математику на твёрдый фундамент.

Однако после появления в 1930-х годах строгого понятия алгоритма эстафету от интуиционизма принял математический конструктивизм, представители которого внесли немалый вклад в современную теорию вычислимости. Кроме того, в 1970-е и 1980-е годы обнаружились существенные связи между некоторыми идеями интуиционистов (даже теми, которые раньше казались абсурдными) и математической теорией топосов. Математика, имеющаяся в некоторых топосах, весьма напоминает ту, которую пытались создать интуиционисты.

В качестве итога можно сделать утверждение: большинство из вышеуказанных парадоксов попросту не существуют в теории множеств с самопринадлежностью . Является ли подобный подход окончательным - спорный вопрос, дальнейшие работы в этой области покажут.

Заключение

Диалектико-материалистический анализ показывает, что парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

Закончен ли третий кризис математики (потому как он находился в причинно-следственной связи с парадоксами; теперь же парадоксы - неотъемлемая часть) - тут мнения расходятся, хотя формально известные парадоксы к 1907-му году были устранены. Впрочем, сейчас в математике имеются и другие обстоятельства, которые можно считать либо кризисными, либо предвещающими кризис (например), отсутствие строгого обснования у континуального интеграла).

Что же касается парадоксов, то весьма важную роль в математике сыграл известный парадокс лжеца, а так же целая серия парадоксов в так называемой наивной (предшествовавшей аксиоматической) теории множеств, вызвавших кризис оснований (один из таких парадоксов сыграл роковую роль в жизни Г. Фреге). Но, возможно, одним из самых недооценённых явлений в современной математике, которое вполне можно назвать и парадоксальным, и кризисным, является решение Полом Коэном в 1963 году первой проблемы Гильберта. Точнее, не сам факт решения, а характер этого решения .

Литература

  1. Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen, 46:481--512, 1895.
  2. И.Н. Бурова. Парадоксы теории множеств и диалектика. Наука, 1976.
  3. M.D. Potter. Set theory and its philosophy: a critical introduction. Oxford University Press, Incorporated, 2004.
  4. Жуков Н.И. Философские основания математики. Мн.: Университетское, 1990.
  5. Фейнман Р.Ф., С. Ильин. Вы, конечно, шутите, мистер Фейнман!: похождения удивительного человека, поведанные им Р. Лейтону. КоЛибри, 2008.
  6. О. М. Мижевич. Два способа преодоления парадоксов в теории множеств Г. Кантора. Логико-философские штудии, (3):279--299, 2005.
  7. С. И. Масалова. ФИЛОСОФИЯ ИНТУИЦИОНИСТСКОЙ МАТЕМАТИКИ. Вестник ДГТУ, (4), 2006.
  8. Чечулин В.Л. Теория множеств с самопринадлежностью (основания и некоторые приложения). Перм. гос. ун-т. – Пермь, 2012.
  9. С. Н. Тронин. Краткий конспект лекций по дисциплине ""Философия математики"". Казань, 2012.
  10. Гришин В.Н., Бочвар Д.А. Исследования по теории множеств и неклассическим логикам. Наука, 1976.
  11. Хофштадтер Д. Гедель, Эшер, Бах: эта бесконечная гирлянда. Бахрах-М, 2001.
  12. Кабаков Ф.А., Мендельсон Э. Введение в математическую логику. Издательство «Наука», 1976.
  13. Д.А. Бочвар. К вопросу о парадоксах математической логики и теории множеств. Математический сборник, 57(3):369--384, 1944.

Георг Фердинанд Людвиг Филипп Кантор родился 4 марта 1845 года в Санкт-Петербурге. Его родителями были Георг-Вольдемар Кантор и Мария Анна Бойм. Кантора вырастили как убеждённого протестанта, а любовь к искусству передалась ему от родителей. Считается, что он был выдающимся скрипачом. Его отец был немцем, а мать россиянкой, которая посещала римско-католическую церковь. С ранних лет у Кантора был частный преподаватель, он также посещал школу в Санкт-Петербурге. В 1856 году, когда Кантору было одиннадцать лет, его семья переехала в Германию, которую Кантор так никогда и не смог полюбить.

Здоровье отца Кантора начало ухудшаться, из-за чего семья вновь переехала, на этот раз во Франкфурт, из-за тёплого климата. Во Франкфурте Кантор учился в гимназии, которую закончил с отличием в 1960 году. Его учителя отмечали, что ему хорошо давалась математика, особенно тригонометрия. После гимназии в 1962 году Кантор поступил в федеральный университет Цюриха, в котором изучал математику. Получив одобрение родителей, он учился в нём в течение пары лет, пока смерть отца не положила учёбе конец. После смерти отца Кантор перешёл в университет Берлина, в котором подружился с Германом Шварцем и посещал лекции Кронекера, Вейерштрасса и Куммера. Летом он также учился в Геттингёнском университете, и в 1867 году закончил свою первую диссертацию по числам с названием «De aequationibus secondi gradus indeterminatis».

В это же году он получил докторскую степень по математике.

Карьера

В начале своей карьеры Кантор был активным членом математических союзов и сообществ. Он стал президентом одного из сообществ в 1865 и 1868 годах. Он также принимал участие в конференции Шеллбаха по математике. В 1869 году его назначили профессором в университете Галле. Он продолжал работу над различными диссертациями по теории чисел и анализу. В это же время Кантор решил продолжить изучение тригонометрии и начал размышлять над уникальностью геометрического изображения функций тригонометрического ряда, которые ему представил старший коллега, Гейне.

К 1870 году Кантор справился с задачей, доказав уникальность геометрического изображения, к большому изумлению Гейне. В 1873 году он доказал, что рациональные числа являются исчисляемыми и могут приходить в соответствие с натуральными числами. К концу 1873 года Кантор доказал, что и вещественные и относительные числа также исчисляемы. Его повысили до должности экстраординарного профессора в 1872 году, а в 1879 году он занял должность профессора высшей категории. Он был благодарен за назначение, но всё же хотел получить должность в более престижном университете.

В 1882 году Кантор начал переписываться с Гёста Миттаг-Леффлером, и вскоре начал печатать свои работы в журнале Леффлера – «Acta Mathematica». Кронекер – современник Канта – постоянно насмехался и угнетал теории Кантора.

Кантор продолжил публиковать свои работы, но в 1884 году у него случился нервный срыв, от которого он вскоре оправился и принял решение преподавать философию. Вскоре он начал изучать литературу елизаветинского периода.

В 1890 году он основал Немецкое математическое общество, в котором он впервые опубликовал чертежи диагонального сечения, таким образом немного наладив отношения с Кронекером. Но, несмотря на то, что учёные начали общаться, они так и не помирились, из-за чего напряжение в их отношениях присутствовало до конца жизни Кантора.

Личная жизнь

В 1874 году Кантор женился на Валли Гуттман; у пары родилось шесть детей. Считается, что Кантор, несмотря на статус известного математика, не мог содержать свою семью. При наличии свободного времени он играл на скрипке и погружался в искусство и литературу. Он был награждён медалью Сильвестра за свои изыскания в математике. В 1913 году Кантор вышел на пенсию так как был морально неустойчив, страдал от постоянных психических расстройств и в конце концов он оказался в здравнице, где и пробыл до своей смерти.

Смерть и наследие

Георг Кантор умер 6 января 1918 года в Галле, после продолжительного психического расстройства. О Канторе вышло множество публикаций, одной из которых была публикация в книге «Творцы математики» и заметка в «Истории математики». Он основал Немецкое математическое сообщество, а большинство его научных работ используется до сих пор.

Основные работы

«Infinite sets»
«Uncountable sets»
«Cantor set»
«Cardinals and Ordinals»
«The Continuum hypothesis»
«Number theory and function theories»
«Infinitesimals»
«Convergent series»
«Transcendental numbers»
«Diagonal argument»
«Cantor-Bernstein-Schroeder theorem»
«Continuum hypothesis»

Публикации

«On a Property of the Collection of All Real Algebraic Numbers»
«Foundations of a General Theory of Aggregates»
«Mathematische Annalen»
«Grundlagen einer allgemeinen Mannigfaltigkeitslehre»
«De aequationibus secondi gradus indeterminatis»

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Теория Кантора о трансфинитных числах первоначально была воспринята настолько нелогичной, парадоксальной и даже шокирующей, что натолкнулась на резкую критику со стороны математиков-современников, в частности, Леопольда Кронекера и Анри Пуанкаре; позднее - Германа Вейля и Лёйтзена Брауэра, а Людвиг Витгенштейн высказал возражения философского плана (см. Споры о теории Кантора). Некоторые христианские богословы (особенно представители неотомизма) увидели в работе Кантора вызов уникальности абсолютной бесконечности природы Бога, приравняв однажды теорию трансфинитных чисел и пантеизм. Критика его трудов была порой очень агрессивна: так, Пуанкаре называл его идеи «тяжёлой болезнью», поражающей математическую науку; а в публичных заявлениях и личных выпадах Кронекера в адрес Кантора мелькали иногда такие эпитеты, как «научный шарлатан», «отступник» и «развратитель молодёжи». Десятилетия спустя после смерти Кантора, Витгенштейн с горечью отмечал, что математика «истоптана вдоль и поперёк разрушительными идиомами теории множеств», которое он отклоняет как «шутовство», «смехотворное» и «ошибочное». Периодически повторяющиеся с 1884 года и до конца дней Кантора приступы депрессии некоторое время ставили в вину его современникам, занявшим чересчур агрессивную позицию, но сейчас считается, что эти приступы, возможно, были проявлением биполярного расстройства.

Резкой критике противостояли всемирная известность и одобрение. В 1904 году Лондонское королевское общество наградило Кантора Медалью Сильвестра, высшей наградой, которую оно могло пожаловать. Сам Кантор верил в то, что теория трансфинитных чисел была сообщена ему свыше. В своё время, защищая её от критики, Давид Гильберт смело заявил: «Никто не изгонит нас из рая, который основал Кантор».

Биография

Юные годы и учёба

Кантор родился в 1845 году в Западной колонии торговцев в Санкт-Петербурге и рос там до 11-летнего возраста. Георг был старшим из шести детей. Он виртуозно играл на скрипке, унаследовав от своих родителей значительные художественные и музыкальные таланты. Отец семейства был членом Петербургской фондовой биржи. Когда он заболел, семья, рассчитывая на более мягкий климат, в 1856 году переехала в Германию: сначала в Висбаден, а потом во Франкфурт. В 1860 году Георг закончил с отличием реальное училище в Дармштадте; учителя отмечали его исключительные способности к математике, в частности, к тригонометрии. В 1862 году будущий знаменитый учёный поступил в Федеральный политехнический институт в Цюрихе (ныне - Швейцарская высшая техническая школа Цюриха). Через год умер его отец; получив солидное наследство, Георг переводится в Берлинский университет имени Гумбольдта, где начинает посещать лекции таких знаменитых учёных, как Леопольд Кронекер, Карл Вейерштрасс и Эрнст Куммер. Лето 1866 года он провёл в Гёттингенском университете, тогда, да и сейчас, - очень важного центра математической мысли. В 1867 году Берлинский университет присвоил ему степень доктора философии за работу по теории чисел «De aequationibus secundi gradus indeterminatis».

Учёный и исследователь

После непродолжительной работы в качестве преподавателя в Берлинской школе для девочек, Кантор занимает место в Галльском университете Мартина Лютера, где и пройдёт вся его карьера. Необходимую для преподавания хабилитацию он получил за свою диссертацию по теории чисел.

В 1874 году Кантор женился на Валли Гуттманн (Vally Guttmann). У них было 6 детей, последний из которых родился в 1886 году. Несмотря на скромное академическое жалование, Кантор был в состоянии обеспечить семье безбедное проживание благодаря полученному от отца наследству. В продолжение своего медового месяца в горах Гарца, Кантор много времени проводил за математическими беседами с Рихардом Дедекиндом, с которым завязал дружбу ещё двумя годами ранее во время отпуска, в Швейцарии.

Кантор получил звание Внештатного Профессора в 1872 году, а в 1879 стал Полным Профессором. Получить это звание в 34 года было большим достижением, но Кантор мечтал о должности в более престижном университете, например, Берлинском - в то время ведущем университете Германии. Однако его теории встречают серьёзную критику, и мечтам не удаётся воплотиться в жизнь. Кронекер, возглавлявший кафедру математики Берлинского университета, всё больше и больше был не в восторге от перспективы получить такого коллегу, как Кантор, воспринимая его как «развратителя молодёжи», наполнявшего своими идеями головы молодого поколения математиков. Более того, Кронекер, будучи заметной фигурой в математическом сообществе и бывшим учителем Кантора, был в корне не согласен с содержанием теорий последнего. Кронекер, который рассматривается сейчас как один из основателей конструктивной математики, с неприязнью относился к канторовской теории множеств, поскольку та утверждала существование множеств, удовлетворяющих неким свойствам, - без предоставления конкретных примеров множеств, элементы которых бы действительно удовлетворяли этим свойствам. Кантор понял, что позиция Кронекера не позволит ему даже уйти из Галльского университета.

В 1881 году Эдуард Гейне, коллега Кантора, умер, оставив после себя вакантную должность. Руководство университета приняло предложение Кантора пригласить на этот пост Рихарда Дедекинда, Генриха Вебера или Франца Мертенца (именно в таком порядке), но все они отказались. В итоге пост занял Фридрих Вангерин, однако он никогда не был другом Кантора.

В 1882 году научная переписка с Дедекиндом оборвалась, вероятно, как следствие отказа последнего от должности в Галле. В то же время Кантор установил другую важную переписку, с Гёста Миттаг-Леффлером, жившим в Швеции, и скоро начал публиковаться в его журнале «Acta mathematica». Однако в 1885 году Миттаг-Леффлёр встревожился относительно философского подтекста и новой терминологии в одной статье, присланной ему Кантором для печати. Он попросил Кантора отозвать свою статью, пока та ещё проходила корректуру, написав, что эта статья «опередила время примерно лет на сто». Кантор согласился, но при этом отметил в переписке с другим человеком:

Вслед за этим Кантор резко оборвал отношения и переписку с Миттаг-Леффлером, проявляя склонность воспринимать исполненную благих намерений критику как глубокое личное оскорбление.

Первый известный приступ депрессии Кантор испытал в 1884 году. Критика его работ тяготила его разум: каждое из 52 писем, которые он написал Маттаг-Леффлёру в 1884 году, подверглось атаке Кронекера. Отрывок из одного письма показывает степень ущерба, нанесённого ощущению уверенности Кантора в себе:

Этот эмоциональный кризис заставил его сместить свой интерес от математики к философии и начать читать лекции по ней. Кроме того, Кантор стал интенсивно изучать английскую литературу эпохи Елизаветы; он пытался доказать, что те пьесы, которые приписывались Шекспиру, на самом деле написал Френсис Бэкон (см. Вопрос авторства Шекспира); результаты по этой работе в конце концов были опубликованы в двух проспектах 1896 и 1897 годов.

Вскоре после этого Кантор восстановился, и сразу же сделал несколько важных дополнений к своей теории, в частности, свои знаменитые диагональный аргумент и теорему. Однако он уже никогда не сможет достичь того высокого уровня, который был в его работах 1874-1884 годов. В конце концов он обратился с предложением о мире к Кронекеру, которое тот благосклонно принял. Тем не менее, разделявшие их философские расхождения и трудности остались. Некоторое время считалось, что периодические приступы депрессии Кантора связаны с жёстким неприятием его работ со стороны Кронекера. Но хотя его депрессия и оказывала большое влияние на математические беспокойства Кантора и его проблемы с некоторыми людьми, маловероятно, что всё это было её причиной. Напротив, в качестве основной причины его непредсказуемого настроения утвердили его посмертный диагноз - маниакально-депрессивный психоз.

В 1890 году Кантор способствовал организации Германского математического общества (Deutsche Mathematiker-Vereinigung) и был председателем первого его сбора в Галле в 1891 году; в то время его репутация была достаточно сильна, даже несмотря на оппозицию Кронекера, чтобы его выбрали первым президентом этого общества. Закрыв глаза на свою неприязнь к Кронекеру, Кантор пригласил его выступить с докладом, но Кронекер не смог этого сделать по причине смерти своей супруги.

Объекты, названные в честь Кантора

  • Канторово множество - континуальное множество нулевой меры на отрезке;
  • Функция Кантора (Канторова лестница);
  • Нумерующая функция Кантора - отображение декартовой степени множества натуральных чисел в само себя;
  • Теорема Кантора (см. также Теорема Кантора (значения)) о том, что мощность множества всех подмножеств данного множества строго больше мощности самого множества;
  • Теорема Кантора - Бернштейна о равномощности множеств A и B при условии равномощности A подмножеству B и равномощности B подмножеству A;
  • Теорема Кантора - Гейне о равномерной непрерывности непрерывной функции на компакте;
  • Теорема Кантора - Бендиксона
  • Медаль Кантора - математическая награда, вручаемая Немецким математическим обществом;
  • а также другие математические объекты.

Сочинения

  • Cantor G. Gesammelte Abhandlungen und philosophischen Inhalts / Hrsg. von E. Zermelo. B., 1932.

Происхождение и образование

В философии математики анализировал проблему бесконечности . Различая два вида математического бесконечного - несобственное (потенциальное) и собственное (актуальное, понимаемое как завершенное целое), - Георг Кантор настаивал на законности оперирования в математике понятием актуально бесконечного. Сторонник платонизма, он в математическом актуально бесконечном видел одну из форм актуально бесконечного вообще, обретающего высочайшую завершенность в абсолютном Божественном бытии. Некоторые христианские богословы, преимущественно представители неотомизма, увидели в трудах Кантора вызов уникальности абсолютной бесконечности природы Бога, приравняв однажды теорию трансфинитных чисел и пантеизм.

В вопросе существования в математике различал интрасубъективную (имманентную, то есть внутреннюю логическую непротиворечивость), и транссубъективную (транзистентную, то есть соответствие процессам внешнего мира), реальность математических объектов. В противовес Кронекеру, отвергавшему все не связанные с построением или вычислением способы введения новых математических объектов, Георг Кантор допускал конструирование любых логически непротиворечивых абстрактных математических систем.

Возражения философского плана идеям Кантора высказал Людвиг Витгенштейн .

Последние годы

В 1897 году научная деятельность Кантора прервалась из-за тяжёлой болезни. Периодически повторяющиеся с 1884 года и до конца его дней приступы депрессии некоторое время ставили в вину современникам Кантора, занявшим слишком агрессивную позицию, эти приступы, как считают, были проявлением биполярного расстройства и маниакально-депрессивного психоза.

Был женат на Валли Гутман, с которой имел шестеро детей, последний из которых родился в 1886 году . Несмотря на скромное академическое жалование, математик оказался в состоянии обеспечить семье безбедное проживание благодаря полученному от отца наследству.

Умер 6 января 1918 года в Галле (Заале).

Его именем был ударный кратер на обратной стороне Луны.