Рефераты Изложения История

Самое тяжелое вещество во вселенной. Рекорды для органических веществ

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.


Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.


Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!

Драгоценные металлы на протяжении веков пленили умы людей, которые готовы выложить огромные суммы за изделия из них,но металл, о котором идёт речь, не используют в ювелирном производстве. Осмий - это самое тяжёлое вещество на Земле, которое относится к редкоземельным драгоценным металлам. Благодаря высокой плотности, это вещество имеет большой вес. Является ли осмий самым тяжёлым веществом (среди известных) не только на планете Земля, но и в космосе?

Это вещество - блестящий металл серо-голубого цвета. Несмотря на то, что он является представителем рода благородных металлов, изготовить из него ювелирные украшения не предоставляется возможным, так как он очень твёрдый и при том хрупкий. Из-за этих качеств осмий тяжело поддается механической обработке, к этому ещё нужно добавить его солидный вес. Если взвесить кубик, сделанный из осмия (длина стороны 8 см) и сравнить его с весом 10-литрового ведра, наполненного водой, то первый окажется тяжелее второго на 1,5 кг.

Самое тяжёлое вещество на Земле было открыто в начале 18 века, благодаря проведению химических опытов с платиновой рудой путём растворения последней в царской водке (смесь азотной и соляной кислот). Поскольку осмий не растворяется в кислотах и щелочах, плавится при температуре чуть выше 3000°С, кипит - при 5012°С, не изменяет своей структуры при давлении,равном 770 ГПа, то его с уверенностью можно считать самым сильным веществом на Земле.

В чистом виде месторождений осмия в природе не существует, обычно он встречается в соединениях с другими химическими веществами. Его содержание в земной коре мизерно, а добыча - трудоемкая. Эти факторы сказывают огромное влияние на стоимости осмия, его цена поражает воображение, ведь он намного дороже золота.

Из-за своей дороговизны это вещество не используется широко в промышленных целях, а только в тех случаях, когда его применение обусловлено максимальной пользой. Благодаря комбинации осмия с другими металлами повышается износостойкость последних, их долговечность и сопротивляемость к механическим воздействиям (трению и коррозии металлов). Такие сплавы используют в ракетостроении, военной и авиа промышленности. Сплав осмия и платины используют в медицине для изготовления хирургических инструментов и имплантов. Его использование оправдано в производстве высокочувствительных приборов, часовых механизмов и компасов.

Интересен тот факт, что учёные находят осмий наряду с другими драгоценными металлами в химическом составе железных метеоритов, упавших на землю. Означает ли это, что данный элемент является самым тяжёлым веществом на Земле и в космосе?

Утверждать это трудно. Дело в том, что условия космического пространства очень сильно отличаются от земных, сила гравитации между объектами очень велика, что в свою очередь приводит к значительному увеличению плотности некоторых космических объектов. Один из примеров - звезды, состоящие из нейтронов. По земным меркам - это огромный вес в одном кубическом миллиметре. И это только крупицы познания, которыми обладает человечество.

Самым дорогим и тяжёлым веществом на земле является осмий-187, на мировом рынке его продаёт только Казахстан, но этому изотопу ещё не найдено применение в промышленности.

Добыча осмия - очень трудоемкий процесс, и до получения его в потребительском виде проходит не менее девяти месяцев. В связи с этим, годовая добыча осмия в мире составляет всего около 600 кг (это очень мало по сравнению с добычей золота, которое исчисляется в тысячах тонн ежегодно).

Название самого сильного вещества "осмий" переводится, как "запах", но сам металл ни чем не пахнет, однако запах появляется в процессе окисления осмия, и он достаточно неприятный.

Итак, по тяжести и плотности на Земле нет равных осмию, так же этот металл описывается, как самый редкий, самый дорогостоящий, самый стойкий, самый блестящий, а еще специалисты утверждают, что оксид осмия обладает очень сильной токсичностью.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Какое вещество самое тяжёлое на нашей планете? и получил лучший ответ

Ответ от Пользователь удален[гуру]
Ученые создали вещество с самой высокой плотностью из всех, которые когда-либо были созданы в лабораторных условиях.
Это было достигнуто в Брукхейвенской национальной лаборатории в Нью-Йорке в результате столкновений атомных ядер золота, двигающихся с околосветовой скоростью. Исследования проводились на самой крупной в мире установке на встречных пучках Коллайдере тяжелых релятивистских ионов (Relativistic Heavy Ion Collider ? RHIC), открывшейся в прошлом году и предназначающейся для воссоздания условий, существовавших вначале существования Вселенной. Полученное вещество обладает в 20 раз большей площадью, чем обычно получается в коллайдерах. Температура сжатой материи достигает триллиона градусов. Вещество существует очень короткое время внутри коллайдера. Материя с такой температурой и плотностью существовала несколько миллионов секунд после Большого Взрыва в начале существования нашей Вселенной. Детали эксперимента стали известны на Конференции Кваркового вещества 2001 в Stony Brook Университете в Нью-Йорке.
Источник: http://www.ibusiness.ru

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Какое вещество самое тяжёлое на нашей планете?

Ответ от Ўля... [гуру]
серое


Ответ от Дукат [гуру]
ртуть


Ответ от Евгений Юрьевич [гуру]
Деньги! Они карман отягощают.
Поддубному. Автор вопроса не указывал на молекулярный вес. А плотность белка, увы, не велика.


Ответ от Владимир Поддубный [активный]
белки"


Ответ от Zoya Ashurova [гуру]
Голова человека, с его мыслями. а мысли бывают разные вот поэтому голова. Удачи!!


Ответ от Luisa [гуру]
Если говорить про вещества природные, то самый высокий удельный вес у минералов группы осмистого иридия - 23 г/см3. Вряд ли искусственное есть что-то тяжелее.
Сравните - плотность галита (поваренной соли) - 2.1-2.5, кварца - 2.6, а барит, у которого 4.3-4.7, уже называют "тяжелым шпатом". Медь - почти 9, серебро - 10-11, ртуть - 13.6, золото - 15-19, минералы группы платины - 14-20.

Самым сильным стабильным окислителем , является комплекс дифторида криптона и пентафторида сурьмы. Из-за сильного окисляющего действия (окисляет все элементы в высшие степени окисления, в том числе кислород и азот воздуха) для него очень трудно измерить электродный потенциал. Единственный растворитель, который реагирует с ним достаточно медленно - безводный фтористый водород.

Самым плотным веществом , является осмий. Его плотность составляет 22,5 г/см 3 .

Самый легкий металл - это литий. Его плотность составляет 0,543 г/см 3 .

Самый дорогой металл - это калифорний. Его стоимость в настоящее время составляет 6 500 000 долларов за 1 грамм.

Самый распространенный элемент в земной коре - это кислород. Его содержание составляет 49% от массы земной коры.

Самый редкий элемент в земной коре - это астат. Его содержание во всей земной коре, по оценкам специалистов составляет всего 0,16 грамм.

Самым горючим веществом , является, по-видимому, мелкий порошок циркония. Для того чтоб он не мог гореть, необходимо поместить его в атмосферу инертного газа на пластину из материала, не содержащего неметаллов.

Веществом с наименьшей температурой кипения , является гелий. Его температура кипения равна -269 градусов по Цельсию. Гелий - единственное вещество, не имеющее температуры плавления при обычном давлении. Даже при абсолютном нуле он остается жидким. Жидкий гелий широко используется в криогенной технике.

Самый тугоплавкий металл - это вольфрам. Его температура плавления составляет +3420 градусов по Цельсию. Из него изготовляют нити накаливания для электрических лампочек.

Самый тугоплавкий материал - это сплав карбидов гафния и тантала (1:1). Он имеет температуру плавления +4215 С.

Самым легкоплавким металлом , является ртуть. Ее температура плавления равна -38,87 градусов по Цельсию. Она же является самой тяжелой жидкостью , ее плотность составляет 13,54 г/см 3 .

Самую высокую растворимость в воде среди твердых веществ имеет трихлорид сурьмы. Его растворимость при +25 С составляет 9880 грамм на литр.

Самым легким газом , является водород. Масса 1 литра составляет всего 0,08988 грамм.

Самым тяжелым газом при комнатной температуре , является гексафторид вольфрама (т. кип. +17 С). Его масса составляет 12,9 г/л, т.е. в нем могут плавать некоторые виды пенопласта.

Самым стойким к кислотам металлом , является иридий. До сих пор не известно ни одной кислоты или их смеси, в которых он бы растворялся.

Самый широкий диапазон концентрационных пределов взрываемости имеет сероуглерод. Взрываться могут все смеси паров сероуглерода с воздухом содержащие от 1 до 50 объемных процентов сероуглерода.

Самой сильной стабильной кислотой является раствор пентафторида сурьмы во фтористом водороде. В зависимости от концентрации пентафторида сурьмы эта кислота может иметь показатель Гаммета до -40.

Самым необычным анионом в соли является электрон. Он входит в состав электрида 18-краун-6 комплекса натрия.

Рекорды для органических веществ

Самым горьким веществом , является денатония сахаринат. Его получили случайно, во время исследования денатония бензоата. Сочетание последнего с натриевой солью сахарина дало вещество в 5 раз более горькое, чем предыдущий рекордсмен (денатония бензоат). В настоящее время оба этих вещества используются для денатурации спирта и других непищевых продуктов.

Самым сильным ядом , является ботулинический токсин типа А. Его летальная доза для мышей (ЛД50, внутрибрюшинно) составляет 0,000026 мкг/кг веса. Это белок с молекулярной массой 150 000, продуцируемый бактерией Clostridium botulinum.

Самым нетоксичным органическим веществом , является метан. При увеличении его концентрации интоксикация возникает из-за недостатка кислорода, а не в результате отравления.

Самый сильный адсорбент , был получен в 1974 году из производного крахмала, акриламида и акриловой кислоты. Это вещество способно удерживать воду, масса которой в 1300 раз превосходит его собственную.

Самыми зловонными соединениями , являются этилселенол и бутилмеркаптан. Концентрация которую человек может обнаружить по запаху так мала, что до сих пор нет методов позволяющих ее точно определить. По оценкам величина ее составляет 2 нанограмма на кубометр воздуха.

Самым сильным галлюциногенным веществом , является диэтиламид l-лизергиновой кислоты. Доза всего в 100 микрограмм вызывает галлюцинации продолжающиеся около суток.

Самым сладким веществом , является N-(N-циклонониламино(4-цианофенилимино)метил)-2-аминоуксусная кислота. Это вещество в 200 000 раз превосходит по сладости 2% раствор сахарозы, но из-за своей токсичности, применения в качестве подсластителя, по видимому не найдет. Из промышленных веществ самым сладким является талин, который в 3 500 - 6 000 раз слаще сахарозы.

Самым медленным ферментом , является нитрогеназа, катализирующая усвоение клубеньковыми бактериями атмосферного азота. Полный цикл превращения одной молекулы азота в 2 иона аммония занимает полторы секунды.

Самым сильным наркотическим анальгетиком является, по-видимому, вещество, синтезированное в Канаде в 80-х годах. Его эффективная анальгетическая доза для мышей (подкожное введение) составляет всего 3,7 нанограмма на килограмм веса, то есть он в 500 раз сильнее эторфина.

Органическим веществом с самым большим содержанием азота является бис(диазотетразолил)гидразин. Он содержит 87,5% азота. Это взрывчатое вещество черезвычайно чувствительно к удару, трению и теплу.

Веществом с самой большой молекулярной массой является гемоцианин улитки (переносит кислород). Его молекулярная масса составляет 918 000 000 дальтон, что больше молекулярной массы даже ДНК.