Рефераты Изложения История

Прикладное значение теории графов исследовательская работа. Проектно исследовательская работа "теория графов"

Муниципальное общеобразовательное бюджетное учреждение -

средняя общеобразовательная школа № 51

г. Оренбург.

Проект на тему:

учитель математики

Егорчева Виктория Андреевна

2017

Гипотеза : Если теорию графов сблизить с практикой, то можно получить самые благотворные результаты.

Цель: Ознакомится с понятием графы и научиться применять их при решении различных задач.

Задачи:

1)Расширить знания о способах построения графов.

2)Выделить типы задач, решение которых требует применения теории графов.

3) Исследовать использование графов в математике.

« Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй ».

Доминик Араго.

I . Введение. стр.

II . Основная часть.

1. Понятие графа. Задача о Кенигсбергских мостах. стр.

2. Свойства графов. стр.

3. Задачи с применением теории графов. стр.

Ш. Заключение.

Значение графов. стр.

IV . Список используемой литературы. стр.

I . ВВЕДЕНИЕ.

Теория графов - наука сравнительно молодая. «Графы» имеют корень греческого слова «графо», что значит «пишу». Тот же корень в словах «график», «биография».

В своей работе я рассматриваю, каким образом используется теория графов в различных областях жизни людей. Каждый учитель математики и практически каждый ученик знает, сколько трудностей доставляет решение геометрических задач, а также текстовых задач по алгебре. Исследовав возможность применения теории графов в школьном курсе математики, я пришла к выводу, что эта теория значительно упрощает понимание и решение задач.

II . ОСНОВНАЯ ЧАСТЬ.

1. Понятие графа.

Первая работа по теории графов принадлежит Леонарду Эйлеру. Она появилась в 1736 году в публикациях Петербургской Академии Наук и начиналась с рассмотрения задачи о кенигсбергских мостах.

Вы наверное, знаете, что есть такой город Калининград, раньше он назывался Кенигсберг. Через город протекает река Преголя. Она делится на два рукава и огибает остров. В 17 веке в городе было семь мостов, расположенных так, как показано на рисунке.

Рассказывают, что однажды житель города спросил у своего знакомого, сможет ли он пройти по всем мостам так, чтобы на каждом из них побывать только один раз и вернуться к тому месту, откуда началась прогулка. Многие горожане заинтересовались этой задачей, однако придумать решение никто не смог. Этот вопрос привлек внимание ученых из многих стран. Разрешить проблему удалось известному математику Леонарду Эйлеру. Леонард Эйлер, уроженец города Базеля родился 15 апреля, 1707 года. Научные заслуги Эйлера огромны. Он оказал влияние на развитие почти всех разделов математики и механики как в области фундаментальных исследований, так и в их приложениях. Леонард Эйлер не только решил эту конкретную задачу, но и придумал общий метод решения этих задач. Эйлер поступил следующим образом: он «сжал» сушу в точки, а мосты «вытянул» в линии. В результате получилась фигура, изображенная на рисунке.

Такую фигуру, состоящую из точек и линий, связывающих эти точки, называют графом . Точки A , B , C , D называют вершинами графа, а линии, которые соединяют вершины - ребра графа. На рисунке из вершин B , C , D выходят по 3 ребра, а из вершины A - 5 ребер. Вершины, из которых выходит нечетное число ребер, называют нечетными вершинами, а вершины, из которых выходит четное количество ребер, - четными.

2.Свойства графа.

Решая задачу про кенигсбергские мосты, Эйлер установил, в частности, свойства графа:

1.Если все вершины графа четные, то можно одним росчерком (т.е. не отрывая карандаша от бумаги и не проводя дважды по одной и той же линии) начертить граф. При этом движение можно начать с любой вершины и окончить в той же вершине.

2.Граф с двумя нечетными вершинами тоже можно начертить одним росчерком. Движение нужно начинать от любой нечетной вершины, а заканчивать на другой нечетной вершине.

3.Граф с более чем двумя нечетными вершинами невозможно начертить одним росчерком.

4.Число нечетных вершин графа всегда четное.

5.Если в графе имеются нечетные вершины, то наименьшее число росчерков, которыми можно нарисовать граф будет равно половине числа нечетных вершин этого графа.

Например, если фигура имеет четыре нечетные, то её можно начертить, самое меньшее, двумя росчерками.

В задаче о семи кенигсбергских мостах все четыре вершины соответствующего графа нечетные, т.е. нельзя пройти по всем мостам один раз и закончить путь там, где он был начат.

3.Решение задач с помощью графов.

1. Задачи на вычерчивание фигур одним росчерком.

Попытки нарисовать одним росчерком пера каждую из следующих фигур приводят к неодинаковым результатам.

Если нечетных точек в фигуре нет, то она всегда поддается вырисовыванию одним росчерком пера, безразлично, с какого места ни начинать черчение. Таковы фигуры 1 и 5.

Если в фигуре имеется только одна пара нечетных точек, то такую фигуру можно нарисовать одним росчерком, начав черчение в одной из нечетных точек (безразлично в какой). Легко сообразить, что вычерчивание должно оканчиваться во второй нечетной точке. Таковы фигуры 2, 3, 6. В фигуре 6, например, вычерчивание надо начинать либо из точки А, либо из точки В.

Если фигура имеет более одной пары нечетных точек, то она вовсе не может быть нарисована одним росчерком. Таковы фигуры 4 и 7, содержащие по две пары нечетных точек. Сказанного достаточно, чтобы безошибочно распознавать, какие фигуры нельзя нарисовать одним росчерком и какие можно, а также, с какой точки надо начинать вычерчивание.

Предлагаю начертить одним росчерком следующие фигуры.

2. Решение логических задач.

ЗАДАЧА №1.

В первенстве класса по настольному теннису 6 участников: Андрей, Борис, Виктор, Галина, Дмитрий и Елена. Первенство проводят по круговой системе - каждый из участников играет с каждым из остальных один раз. К настоящему моменту некоторые игры уже проведены: Андрей сыграл с Борисом, Галиной, Еленой; Борис - с Андреем, Галиной; Виктор - с Галиной, Дмитрием, Еленой; Галина - с Андреем, Виктором и Борисом. Сколько игр проведено к настоящему моменту и сколько ещё осталось?

РЕШЕНИЕ:

Построим граф как показано на рисунке.

Сыграно 7 игр.

На этом рисунке граф имеет 8 ребер, следовательно, осталось провести 8 игр.

ЗАДАЧА №2

Во дворе, который окружен высоким забором, находятся три домика: красный, желтый и синий. В заборе есть три калитки: красная, желтая и синяя. От красного домика проведите дорожку к красной калитке, от желтого домика - к желтой калитке, от синего - к синей так, чтобы эти дорожки не пересекались.

РЕШЕНИЕ:

Решение задачи приведено на рисунке.

3. Решение текстовых задач.

Для решения задач методом графов надо знать следующий алгоритм:

1.О каком процессе идет речь в задаче? 2.Какие величины характеризуют этот процесс? 3.Каким соотношением связаны эти величины? 4.Сколько различных процессов описывается в задаче? 5.Есть ли связь между элементами?

Отвечая на эти вопросы, анализируем условие задачи и записываем его схематично.

Например . Автобус шёл 2 ч со скоростью 45 км/ч и 3 ч со скоростью 60 км/ч. Какой путь прошёл автобус за эти 5 часов?

S
¹=90 км V ¹=45 км/ч t ¹=2ч

S = VT

S ²=180 км V ²=60 км/ч t ²=3 ч

S ¹ + S ² = 90 + 180

Решение:

1)45 x 2 = 90 (км) - прошёл автобус за 2 ч.

2)60 x 3 = 180 (км) - прошёл автобус за 3 ч.

3)90 + 180 = 270 (км) -прошёл автобус за 5 ч.

Ответ: 270 км.

III . ЗАКЛЮЧЕНИЕ.

В результате работы над проектом я узнала, что Леонард Эйлер был основоположником теории графов, решил задачи с применением теории графов. Для себя сделала вывод, что теория графов находит применение в различных областях современной математики и её многочисленных приложений. Не приходится сомневаться в полезности ознакомления нас, учащихся, с основными понятиями теории графов. Решение многих математических задач упрощается, если удается использовать графы. Представление данных в виде графа придает им наглядность. Многие доказательства также упрощаются, приобретают убедительность, если воспользоваться графами. В особенности это относится к таким областям математики, как математическая логика, комбинаторика.

Таким образом, изучение этой темы имеет большое общеобразовательное, общекультурное и общематематическое значение. В повседневной жизни все большее применение находят графические иллюстрации, геометрические представления и другие приемы и методы наглядности. С этой целью изучения элементов теории графов полезно ввести в начальном и среднем звене школы, хотя бы во внеклассной работе, так как в программу по математике эта тема не включена.

V . СПИСОК ЛИТЕРАТУРЫ:

2008г.

Рецензия.

Проект на тему «Графы вокруг нас» выполнил ученик 7 «А» класса МОУ-сош №3г.Красный Кут Зайцев Никита.

Отличительной особенностью работы Зайцева Никиты является её актуальность, практическая направленность, глубина раскрытия темы, возможность использования её в дальнейшем.

Работа является творческой, в виде информационного проекта. Ученик выбрал эту тему, чтобы показать взаимосвязь теории графов с практикой на примере маршрута школьного автобуса, показать, что теория графов находит применение в различных областях современной математики и её многочисленных приложений, в особенности это относится к экономике, математической логике, комбинаторике. Он показал, что решение задач значительно упрощается, если удается использовать графы, представление данных в виде графа придает им наглядность, многие доказательства также упрощаются, приобретают убедительность.

В работе рассматриваются такие вопросы как:

1. Понятие графа. Задача о Кенигсбергских мостах.

2. Свойства графов.

3. Задачи с применением теории графов.

4. Значение графов.

5. Вариант маршрута школьного автобуса.

При выполнении своей работы Зайцев Н. использовал:

1. Альхова З.Н., Макеева А.В. «Внеклассная работа по математике».

2. Журнал «Математика в школе». Приложение «Первое сентября» № 13

2008г.

3. Я.И.Перельман «Занимательные задачи и опыты».- Москва: Просвещение, 2000 г.

Работа выполнена грамотно, материал соответствует требованиям данной темы, соответствующие рисунки прилагаются.

Кучин Анатолий Николаевич

Руководитель проекта:

Куклина Татьяна Ивановна

Учреждение:

МБОУ "Основная общеобразовательная школа" п. Троицко-Печорск Респ. Коми

В своей исследовательской работе по математике "В мире графов" я постараюсь выяснить особенности применения теории графов при решении задач и в практической деятельности. Результатом моей исследовательской работы по математике о графах станет генеалогическое древо моей семьи.

В исследовательской работе по математике я планирую познакомиться с историей теории графов, изучить основные понятия и виды графов, рассмотреть методы решения задач с помощью графов.


Также, в исследовательском проекте по математике о графах я покажу применение теории графов в различных областях жизнедеятельности человека.

Введение
Глава 1. Знакомимся с графами
1.1. История графов.
1.2. Виды графов
Глава 2. Возможности применения теории графов в различных областях повседневной жизни
2.1. Применение графов в различных областях жизни людей
2.2. Применение графов при решении задач
2.3. Генеалогическое древо – один из способов применения теории графов
2.4. Описание исследования и составление генеалогического древа моей семьи
Заключение
Использованная литература
Приложения

«В математике следует помнить не формулы,
а процесс мышления».
Е.И. Игнатьева

Введение


Графы повсюду! В моей исследовательской работе по математике на тему "В мире графов" речь пойдет о графах, которые, к аристократам былых времен никакого отношения не имеют. «» имеют корень греческого слова «графо », что значит «пишу ». Тот же корень в словах «график », «биография », «голография ».

Впервые с понятием “граф ” я встретился при решении олимпиадных задач по математике. Трудности в решении этих задач объяснялись отсутствием этой темы в обязательном курсе школьной программы. Возникшая проблема стала главной причиной выбора темы данной исследовательской работы. Я решил подробно изучить всё, что связано с графами. Как широко используется метод графов и насколько важен он в жизни людей.

В математике даже есть специальный раздел, который так и называется: «Теория графов ». Теория графов является частью как топологии , так и комбинаторики . То, что это топологическая теория, следует из независимости свойств графа от расположения вершин и вида соединяющих их линии.

А удобство формулировок комбинаторных задач в терминах графов привела к тому, что теория графов стала одним из мощнейших аппаратов комбинаторики. При решении логических задач обычно бывает достаточно трудно держать в памяти многочисленные факты, данные в условии, устанавливать связь между ними, высказывать гипотезы, делать частные выводы и пользоваться ими.

Выяснить особенности применения теории графов при решении задач и в практической деятельности.

Объектом исследования является математические графы.

Предметом исследования являются графы как способ решения целого ряда задач практической направленности.

Гипотеза: если метод графов так важен, то обязательно найдется его широкое применение в различных областях науки и жизнедеятельности человека.

Для реализации поставленной цели, мною были выдвинуты следующие задачи:

1. познакомиться с историей теории графов;
2. изучить основные понятия теории графов и виды графов;
3. рассмотреть способы решения задач с помощью графов;
4. показать применение теории графов в различных областях жизни человека;
5. создать генеалогическое древо моей семьи.

Методы: наблюдение, поиск, отбор, анализ, исследование.


Исследование:
1. были изучены ресурсы сети Интернет и печатные издания;
2. выписаны области науки и жизнедеятельности человека, в которых используется метод графов;
3. рассмотрено решение задач с помощью теории графов;
4. изучена методика составления генеалогического древа моей семьи.

Актуальность и новизна.
Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации. Теория графов находит применение в различных областях современной математики и ее многочисленных приложениях, в особенности это относится к экономике, технике, к управлению. Решение многих математических задач упрощается, если удается использовать графы. Представление данных в виде графа придает им наглядность и простоту. Многие математические доказательства также упрощаются, приобретают убедительность, если пользоваться графами.

Чтобы убедится в этом, мной и руководителем было предложено учащимся 5-9 классов, участникам школьного и муниципального туров Всероссийской олимпиады школьников, 4 задачи, при решении которых можно применить теорию графов (Приложение 1 ).

Результаты решения задач таковы:
Всего 15 учащихся (5 класс – 3 ученика, 6 класс - 2 ученика, 7 класс – 3 ученика, 8 класс - 3 ученика, 9 класс - 4 ученика) применили теорию графов в 1 задаче – 1, во 2 задаче – 0, в 3 задаче – 6, в 4 задаче – 4 учащихся.

Практическая значимость исследования заключается в том, что результаты несомненно вызовут интерес у многих людей. Разве не пытался кто-то из вас построить генеалогическое дерево своей семьи? А как это сделать грамотно?
Оказывается они решаются при помощи графов легко.

Научное общество учащихся

«Поиск»

40 Открытая областная научная конференция учащихся.

Секция математики .

Научная работа по теме:

«Графы» в моей родословной

Выполнила: Лобурец Виктория

ученица 7 класса

МОУ «Куломзинская СОШ»

Руководитель:

Лысенко Ольга Григорьевна

учитель математики

МОУ «Куломзинская СОШ»

Омск - 2008г.


  1. Актуальность и новизна

  2. Цель и задачи

II. ОСНОВНАЯ ЧАСТЬ
1.Понятие о графах

2.Свойства графов

3.Применение графов
III.Практическая часть
IV.Заключение
V.Литература

VI.Приложение

С О Д Е Р Ж А Н И Е

Введение………………………………………………………………..…….3

П.1.1. Актуальность и новизна……………………………………………..4

П.1.2.Цели и задачи…………………………………………………………4

Глава I.Теоретическаячасть …...………………………………….……….5

П.2.1.Понятие о графах……………………………………………………..5

Глава II. Практическая часть……………………………………………..11

П.2.1. «Графы» в моей родословной……………………………………..11

П.2.2.Решение логических задач методом графа………………………..11

Заключение…..……………………………………………………………...17

Литература……..……………………………………………………………..18

Приложения…………………………………………………………………..19

Введение
1.Актуальность и новизна
Теория графов находит применение в различных областях современной математики и ее многочисленных приложениях, в особенности это относится к экономике, технике, к управлению. Теория графов – важный раздел дискретной математики, практическая роль которой возросла за счёт развития различных АСУ и вычислительной техники дискретного действия, в теоретическом плане помимо связей с комбинаторикой и геометрией наметились сдвиги на стыке теории графов с алгеброй, математической логикой.

Исторически сложилось так, что теория графов зародилась в ходе решения головоломок двести с лишним лет назад. Очень долго она находилась в стороне от главных направлений исследований ученых. Толчок к развитию теория графов получила на рубеже XIX и XX столетий, когда резко возросло число работ в области топографии и комбинаторики, с которыми ее связывают самые тесные узы родства. Наиболее раннее упоминание о графах встречается в работе Л. Эйлера (1736г). В середине XIX века инженер-электрик Г. Кирхгоф разработал теорию деревьев для исследования электрических цепей, а математик А. Кэли в связи с описанием строения углеводородов решил перечислительные задачи для трех типов деревьев. Окончательно как математическая дисциплина теория графов оформилась в 1936г. после выхода монографии Д. Кёнига «Теория конечных и бесконечных графов».

В последнее время графы и связанные с ними методы исследований органически пронизывают на разных уровнях едва ли не всю современную математику. Теория графов находит массу приложений как в различных областях математики: алгебре, геометрии, топологии, комбинаторике, теории кодирования, исследовании операций, так и в физике, химии, лингвистике, экономике, психологии и других науках.

Решение многих математических задач упрощается, если удается использовать графы. Представление данных в виде графа придает им наглядность и простоту.

Новизной данной работы является доказательство эффективности метода графа при решении логических задач.

Главной целью школьного математического образования является развитие умственных способностей учеников. Нужен переход от информационно- объяснительной технологии к деятельно-развивающей, направленной на развитие личностных качеств каждого школьника. Важными должны стать не только усвоенные знания, но и сами способы усвоения и переработки учебной информации, развитие познавательной деятельности и творческого потенциала ученика. Большинство школьников свои приобретенные знания по математике вряд ли будут использовать в повседневной жизни, хотя многие из них закончат технические ВУЗы. Человек быстро забывает те знания, которыми постоянно не пользуется, но с ним навсегда остается логическое развитие. Именно этой актуальной теме развития личности учащегося посвящается моя работа.

Объектом исследования является процесс обучения учащихся методу «графа».

Гипотеза : по нашему предположению решение учащимися логических задач методом графа могут способствовать формированию и развитию логического мышления.

Исходя из гипотезы выдвинуты следующие цели и задачи исследования.

2. Цель и задачи.
Цель : использовать метод графа для решения логических задач, тем самым способствовать развитию логического мышления, рассмотреть решение задач с использованием понятия «Граф», проверить выполнение «Графов» на родословных.

Задачи:

1)Изучить научно- популярную литературу по данному вопросу.

2)Исследовать выполнение «Графов» для выяснения родственных отношений.

3)Проанализировать результаты проведенных экспериментов.

4)Изучение метода «графа», как метода решения логических задач.

Гл.I. Теоретическая часть

П.2.1. Понятие о графах

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Математические графы с дворянским титулом «граф» связывает общее происхождение от латинского слова « графио » - пишу. Типичными графами являются схемы авиалиний, которые часто вывешивается в аэропортах, схемы метро, а на географических картах – изображение железных дорог (рис. 1). Выбранные точки графа называются его вершинами, а соединяющие их линии – ребрами.

Использует графы и дворянство. На рисунке 2 приведена часть генеалогического дерева знаменитого дворянского рода. Здесь его вершины – члены этого рода, а связывающие их отрезки – отношения родственности, ведущие от родителей к детям.

Слово «дерево» в теории графов означает граф, в котором нет циклов, то есть в котором нельзя из некоторой вершины пройти по нескольким различным ребрам и вернуться в ту же вершину. Генеалогическое дерево будет деревом и в смысле теории графов, если в этом семействе не было браков между родственниками.

Не трудно понять, что граф – дерево всегда можно изобразить так, чтобы его ребра не пересекались. Тем же свойством обладают графы, образованные вершинами и ребрами выпуклых многогранников. На рисунке 3 приведены графы, соответствующие пяти правильным многогранникам. В графе соответствующем тетраэдру, все четыре вершины попарно соединены ребрами.

Рассмотрим граф с пятью вершинами, попарно соединенными друг с другом (рис. 4). Здесь ребра графа пересекаются. Невозможно его изобразить так, чтобы пересечений не было, как невозможно выполнить намерения трех человек, описанных Льюсом Кэрроллом. Они жили в трех домиках, неподалеку от них находились три колодца: один с водой, другой с маслом, а третий с повидлом, и ходили к ним по тропинкам, изображенным на рисунке 5. Однажды эти люди перессорились и решили провести тропинки от своих домов к колодцам так, чтобы эти тропинки не пересекались. На рисунке 6 изображена очередная попытка проложить такие тропы.

Графы, изображенные на рисунках 4 и 5, как, оказалось, играют решающую роль при определении для каждого графа – является ли он плоским, то есть, может ли он быть изображен на плоскости без пересечения его ребер. Польский математик Г. Куратовский и академик

Л.С.Понтрягин независимо друг от друга доказали, что если граф не является плоским, то в нем «сидит» хотя бы один из графов, изображенных на рисунках 4 и 5, то есть «полный пятивершинник» или граф «домики – колодцы».

Графами являются блок – схемы программ для ЭВМ, сетевые графики строительства, где вершины – события, означающие окончания работ на некотором участке, а ребра, связывающие эти вершины, - работы, которые возможно начать по совершении одного события и необходимо выполнить для совершения следующего.

Если на ребрах графа нанесены стрелочки, указывающие направление ребер, то такой граф называют направленным.

Стрелка от одной работы к другой на графе, изображенном на рис. 7, означает последовательность выполнения работ. Нельзя начинать монтаж стен, не закончив строить фундамент, чтобы приступить к отделке, нужно иметь на этажах воду и т. д.

рис.7.

Около вершин графа указаны числа – продолжительность в днях соответствующей работы. Теперь мы можем узнать наименьшую возможную продолжительность строительства. Для этого из всех путей по графу в направлении стрелок нужно выбрать путь, у которого сумма чисел при вершинах наибольшая. Он называется критическим путем (на рис. 7 он выделен коричневым цветом). В нашем случае получаем 170 дней. А если сократить время прокладки электросети с 40 до 10 дней, то и время строительства тоже сократится на 30 дней? Нет, в этом случае критический путь станет проходить не через эту вершину, а через вершины, соответствующие строительству котлована, укладке фундамента и т. д. И общее время строительства составит 160 дней, т. е. срок сократиться лишь на 10 дней.

На рис.8 изображена схема дорог между селами М, А, Б, В, Г.

Здесь каждые две вершины соединены между собой ребром. Такой граф называется полным. Числа на рисунке указывают расстояния между селами по этим дорогам. Пусть в селе М находится почта и почтальон должен развезти письма по остальным четырем селам. Существует много различных маршрутов поездки. Как из них выбрать наикратчайший? Проще всего проанализировать все варианты. Сделать это поможет новый граф (внизу), на котором легко увидеть возможные маршруты. Вершина М вверху – начало маршрутов. Из нее можно начать движение четырьмя различными способами: в А, в Б, в В, в Г. После посещения одного из сел остается три возможности продолжения маршрута, потом две, потом дорога в последнее село и вновь в М. Всего 4 ×3× 2× 1 = 24 способа.

Расставим вдоль ребер графа цифры, обозначающие расстояния между селами, а в конце каждого маршрута напишем сумму этих расстояний по маршруту. Из полученных 24 чисел наименьшими являются два числа по 28км, соответствующие маршрутам М-В-Б-А-Г-М и М-Г-А-Б-В-М. Это один и тот же путь, но пройденный в разных направлениях. Заметим, что граф на рис. 8 тоже можно сделать направленным, указав направление сверху вниз на каждом из ребер, что соответствовало бы направлению движения почтальона. Подобные задачи часто возникают при нахождении лучших вариантов развозки товаров по магазинам, стройматериалов по стройкам.

Графы часто используют для решения логических проблем, связанных с перебором вариантов. Для примера рассмотрим такую задачу. В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю. Решение: Ситуацию в каждый момент можно описать тремя числами, где А-количество литров воды в ведре, Б - в большой кастрюле, В - в меньшей. В начальный момент ситуация описывалась тройкой чисел (8, 0, 0), от нее мы можем перейти в одну из двух ситуаций: (3, 5, 0), если наполним водой большую кастрюлю, или (5, 0, 3), если наполним меньшую кастрюлю. В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.

Подобным образом можно составить граф любой позиционной игры: шахмат, шашек, «крестиков – ноликов», где позиции станут вершинами, а направленные отрезки между ними будут означать, что одним ходом можно перейти от одной позиции к другой, по направлению стрелки. Однако для шахмат и шашек такой граф будет очень большим, поскольку различные позиции в этих играх исчисляются миллионами. А вот для игры «крестики – нолики» на доске 3×3 соответствующий граф нарисовать не так уж трудно, хотя и он будет содержать несколько десятков (но не миллионов) вершин. В терминах графов легко формулируется и решается задача о назначении на должности. А именно: если имеется несколько вакантных должностей и группа лиц, желающих их занять, причем каждый из претендентов имеет квалификацию для нескольких должностей, то при каких условиях каждый из претендентов сможет получить работу по одной из своих специальностей?

Свойства графов не зависят от того, соединены вершины отрезками или кривыми линиями. Это дает возможность изучения их свойств с помощью одной из молодых наук – топологии, хотя сами задачи теории графов являются типичными задачами комбинаторики.

Гл.II. Практическая часть.
П.2.1. «Графы» в моей родословной.
Методы работы:

Сравнение и анализ результатов эксперимента.

Методика работы:

Для проведения исследований были выбраны:

А) Родословная моей семьи, архивы данных, свидетельства о рождении.

Б) Родословная князей Голицыных, архивы данных.

Я провела исследование, результаты исследования поместила в схемы и проанализировала их.

Методика 1.
Цель: проверить выполнение ’’Графов” на своей родословной.

Результаты: схема 1(см. приложение 1).


Методика 2.
Цель: проверить выполнение ’’Графов’’ на родословной князей Голицыных.

Результат: схема 2 (см. приложение 2).

Вывод: я заметила, что родословная – типичный граф.
П. 2.2. Решение логических задач методом графа
В течение всех лет обучения в школе мы много решаем разнообразных задач, в том числе и логических: задачи занимательного характера, головоломки, анаграммы, ребусы и т.п. Чтобы успешно решать задачи такого вида, надо уметь выделять их общие признаки, подмечать закономерности, выдвигать гипотезы, проверять их, строить цепочки рассуждений, делать выводы. Логические задачи от обычных отличаются тем, что не требуют вычислений, а решаются с помощью рассуждений. Можно сказать, что логическая задача – это особая информация, которую не только нужно обработать в соответствии с заданным условием, но и хочется это сделать. Логика помогает усваивать знания осознанно, с пониманием, т.е. не формально; создаёт возможность лучшего взаимопонимания. Логика – это искусство рассуждать, умение делать правильные выводы. Это не всегда легко, потому, что очень часто необходимая информация «замаскирована», представлена неявно, и надо уметь её извлечь. Как известно, видение рождает мышление. Возникает проблема: как установить логические связи между разрозненными фактами и как оформить в виде единой целой. Видеть ход доказательства и решения задач позволяет метод граф - схем, который делает доказательство более наглядным и позволяет кратко и точно изложить доказательства теорем и решения задач.

Пример 1.1 . Красный, синий, желтый и зеленый карандаши лежат в четырех коробках по одному. Цвет карандаша отличается от цвета коробки. Известно, что зеленый карандаш лежит в синей коробке, а красный не лежит в желтой. В какой коробке лежит каждый карандаш?

Решение. Обозначим точками карандаши и коробки. Сплошная линия будет обозначать, что карандаш лежит в соответствующей коробке, а пунктирная, что не лежит. Тогда с учетом задачи имеем G1 (рис. 1).

Рис.1
Далее достраиваем граф по следующему правилу: поскольку в коробке может лежать ровно один карандаш, то из каждой точки должны выходить одна сплошная линия и три пунктирные. Получается граф G2 , дающий решение задачи.

Пример 1.2. Беседуют трое друзей: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: «Любопытно, что один из нас белокурый, другой брюнет, третий рыжий, но ни у кого цвет волос не соответствует фамилии». Какой цвет волос имеет каждый из друзей?

Решение. Построим граф отношения, заданного в условии задачи. Для этого, прежде всего, выделим множество фамилий М и множество цветов волос К, элементы которых будем обозначать точками. Точки множества М назовем буквами Б, Ч, Р (Белокуров, Чернов и Рыжов); точки второго множества – б, бр, р (белокурый, брюнет, рыжий). Если точке из одного множества соответствует точка из другого, мы их соединим сплошной линией, а если не соответствует – штриховой. Условие задачи указывает лишь на несоответствия, поэтому, вначале должен возникнуть граф, изображенный на рисунке 2.

Рис.2


Из условия задачи следует, что для каждой точки из множества М, существует одна и только одна точка из множеств К, которая соответствует первой и, наоборот, каждой точке из множества К соответствует одна и только одна точка из множества М. Задача сводится к тому, чтобы найти это единственно возможное соответствие между элементами множеств М и К, т. е. к нахождению трех сплошных линий, соединяющих соответствующие точки множеств.

Принцип решения задачи прост. Если какая-то точка оказывается соединенной с двумя точками другого множества штриховыми линиями, то с его третьей точкой ее необходимо соединить сплошной линией. Поэтому граф на рисунке 2 дополняется сплошными линиями, соединяющими точки Б и р , Р и бр (рис. 3).

Рис.3
Далее остается соединить сплошной линией точку Ч и точку б , так как точка Ч соединена с точкой бр штриховой линией, а точка р уже «занята» (рис. 4).

Рис. 4


Таким образом, на графе этого рисунка автоматически прочитываем ответ: Белокуров - рыжий, Чернов - белокурый, Рыжов – брюнет.

В следующей задаче применение графов помогает обнаружить наличие двух решений.

Пример 1.3. Маша, Лида, Женя и Катя умеют играть на разных инструментах (виолончели, рояле, гитаре и скрипке), но каждая только на одном. Они же владеют разными иностранными языками (английским, французским, немецким и испанским), но каждая только одним. Известно, что:

1. девушка, которая играет на гитаре, говорит по-испански;

2. Лида не играет ни на скрипке, ни на виолончели и не знает английского языка;

3. Маша не играет ни на скрипке, ни на виолончели и не знает английского языка;

4. девушка, которая говорит по-немецки, не играет на виолончели;

5. Женя знает французский язык, но не играет на скрипке.

Кто на каком инструменте играет и какой иностранный язык знает?

Решение. Условию задачи соответствует граф, изображенный на рисунке 5.

Рис. 5


Проведем последовательно следующие сплошные отрезки: КС, ВЖ, ВФ, АК (рис.6).

Рис. 6

Тем самым образуются два «сплошных» треугольника ЖВФ и КСА. Проводим еще сплошной отрезок РН. Теперь убеждаемся, что условия задачи не обеспечивают однозначности выбора третьей точки для каждой из пар РН и ГИ. Возможны следующие варианты «сплошных» треугольников: МГИ и ЛРН или ЛГИ и МРН. Таким образом, задача имеет два решения.

В некоторых случаях решение комбинаторных задач может быть затруднено. Облегчить процесс нахождения можно, научившись пользоваться такими средствами организации перебора как таблицы и графы. Они позволяют расчленить ход рассуждений, четко провести перебор, не упустив каких-либо возможностей.

Сначала как наиболее простым средством организации перебора нужно познакомится с таблицами.

Для примера рассмотрим такую задачу:

Имеются два сосуда вместимостью 3л и 5л. Как с помощью этих сосудов налить из водопроводного крана 4л воды?

Начнем с конца. Как в результате может получиться 4л? – Из 5-литрового сосуда отлить 1л. Как это сделать? – Надо в 3-литровом сосуде иметь ровно 2л. Как их получить? – Из 5-литрового сосуда отлить 3 литра. Теперь запишем решение задачи сначала в виде таблицы.

Поиск решения можно начать с действия 3+1, что привело бы к решению, записанному в следующей таблице.

Из чисел 3 и 5 можно составить выражения, имеющие значение 4:

5-3+5-3=4 и 3+3-5+3=4

Несложно убедиться, что полученные выражения соответствуют найденным выше решениям.

Второе средство организации при решении комбинаторных задач, которое можно использовать – графы.

Приведу пример решения с применением граф - дерева для решения комбинаторной задачи.

Например, требуется решить задачу: «Однажды встретились пятеро друзей. Каждый здороваясь, пожал каждому руку. Сколько рукопожатий было сделано».

Сначала выясняется, как нужно обозначить каждого человека. Рассматривая разные предложения, приходят к тому, что быстрее и удобнее изображать людей точками. Точки нужно расположить примерно по кругу, нарисовать их цветным карандашом, чтобы записи были понятными и наглядными. От двух точек навстречу друг к другу проводят черточки – «руки», которые встречаясь образуют одну линию. Так приходят к символическому изображению рукопожатия. Сначала составляются все рукопожатия одного человека (точка соединяется линиями со всеми остальными). Потом переходят к другому человеку. Проведенные лини помогают увидеть, с кем он уже поздоровался, а с кем – нет. Составляются недостающие рукопожатия (эти линии лучше проводить другим цветом, так как потом лучше будет подсчитать общее число рукопожатий). И так действуют до тех пор, пока все не поздороваются друг с другом. По получившему графу подсчитать число рукопожатий (их всего 10).

Следующая задача :

«Сколько двухзначных чисел можно составить, используя цифры 1,2,3,4?».

Решение. Число 12: надо показать, что начинает с цифры 1, а оканчивается цифрой 2. петля появляется при обозначении, например, числа 11: стрелка должна начинаться и заканчиваться на одной и той же цифре. Открыв для себя первых задачах эти условные обозначения (точки, лини, стрелки, петли), я стала применять их при решении различных задач, составляя графы того или иного вида (рис 2).

ответ:16 чисел.

Приведу некоторые примеры:

1.В финал турнира по шашкам вышли два российских игрока, два немецких и два американских. Сколько партий будет в финале, если каждый играет с каждым по одному разу и представители одной страны между собой не играют? (рис.3.).


н

Н



В финале будет сыграно 4×6 = 24партии.
2.В вазе лежали конфеты четырех сортов. Каждый ребенок взял две конфеты. И у всех оказались отличающие наборы конфет. Сколько могло быть детей? (граф на рис.4).

Из данного графа становится понятно, что возможно 6 отличающихся наборов конфет, а следовательно, детей могло быть 6.


Вывод: Графовые задачи обладают рядом достоинств, позволяющих использовать их для развития соображения и улучшения логического мышления детей, начиная с детского сада и заканчивая старшими классами средней школы. Язык графов прост, понятен и нагляден. Графовые задачи допускают изложение в занимательной, игровой форме. С другой стороны, графовые задачи труднее поддаются формализации, чем, например, школьные задачи по алгебре, для их решения часто не требуется глубоких знаний, а следует применить смекалку.

С их помощью можно обеспечивать учеников новыми знаниями, которые облегчат ему в дальнейшем изучение информатики; повышать логическое и умственное развитие школьников; приучать их к самостоятельной работе; развивать их воображение и повышать культуру общения.

При решении комбинаторных задач сохраняется тесная связь мышления с практическими действиями, обеспечивается постепенный переход действиям в уме, способствует развитию качества мышления, как вариативность.

ЗАКЛЮЧЕНИЕ
Выполняя эту работу, я изучила один из интереснейших вопросов теории графов, я рассмотрела математические графы, области их применения, решила несколько задач с помощью графов. Научилась использовать «графы» для выяснения родственных отношений. Изучила метод «графов», как один из методов решения логических задач.

Теория графов не изучается в школьном курсе, но с задачами по дискретной математике приходится сталкиваться довольно часто на различных математических олимпиадах и конкурсах. Графы достаточно широко применяются в математике, технике, экономике, управлении. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты), и познакомившись с элементами теории графов, я надеюсь, что смогу успешно решать не только олимпиадные задачи.

В дальнейшем я собираюсь продолжить изучение теории графов, потому что этот раздел математики показался мне интересным и полезным. Кроме того, работая над исследовательской работой, я освоила работу на компьютере в текстовом редакторе Word и Рower Point. Я считаю, что задачи исследовательской работы выполнила.

Литература.


  1. Березина Л.Ю. Графы и их применение. – М., 1979.

  2. Виленкин Н.Я. Математика. – М.: Русское слово, 1997.

  3. Гарднер М. «Математические досуги» М.: Мир,1972

  4. Гнеденко Б.В. Курс теории вероятностей. - М.: УРСС, 2005.

  5. Коннова Л.П. Знакомтесь, графы. – Самара, 2001.

  6. Лыкова И.А. Логические задачки –М.: Карапуз, 2000.

  7. Савин А.В. Энциклопедический словарь юного математика. 2-е изд., - М.: Педагогика, 1989

  8. Шадринова В.Д. Познавательные процессы и способности в обучении – М.: Просвещение, 1980

  9. Чистяков В. П. Курс теории вероятностей. М., Просвещение, 1982.

Приложения.
Приложение 1.
Лобурец Виктория Владимировна 1994 гр.

Лобурец В. Н

1962
.

Орловская Л. В.

страница 1

Научное общество учащихся

«Поиск»

Секция информатика

Научная работа по теме:

«Его величество Граф»

Выполнила : Сапожникова Светлана,

ученица 7 класса

МОУ «Сергеевская СОШ»

Оконешниковского МР


Руководитель : Гармс Елена Анатольевна,

учитель информатики

МОУ «Сергеевская СОШ»

Омск - 2010
Содержание

Научное общество учащихся 1

«Поиск» 1

Научная работа по теме: 1

Введение 3

ТЕОРИЯ ГРАФОВ 4

1.2.Эйлеровы графы 7

1.3. Задача о мостах, Леонард Эйлер и теория графов 8

2.1. Решение задач с помощью графов «Один день из жизни Графа» 11

Библиографический список 16


Введение

Актуальность исследования . Вот уже второй год я интересуюсь шахматами и занимаюсь в школе в шахматном кружке «Шах и Мат». На одном из занятий в качестве домашнего задания была предложена задача, в которой нужно было просчитать перестановку фигур за меньшее число ходов. Как это сделать? Я стала искать пути решения, и оказалось, что это можно сделать с помощью графов. Раньше понятием «граф» я встречалась только на уроке истории при изучении темы дворянство.

Графы заинтересовали меня своей возможностью помогать в решении различных головоломок, математических и логических задач. Теория графов в настоящее время является интенсивно развивающимся разделом дискретной математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации: коммуникационные сети, схемы электрических и электронных приборов, химические молекулы, отношения между людьми, всевозможные транспортные схемы и многое-многое другое. Очень важное, для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Я решила разобраться, какую роль в обычной жизни играют графы.


Объект исследования : понятие граф
Предмет исследования : степень распространенности применения графов
Цель исследования : Исследовать роль графов в нашей жизни.
Задачи исследования :

1.познакомиться с историей возникновения графов;

2.познакомиться с основными понятиями графа, видами, элементами;

3.научиться решать задачи с помощью графов;

4.составить своё родословное дерево.
Методы исследования : частично - поисковый, аналитический.

Глава 1

ТЕОРИЯ ГРАФОВ


    1. Понятие графа

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. С дворянским титулом «граф» их связывает общее происхождение от латинского слова «графио» - пишу.

В математике определение графа дается так: «графом называется конечное множество точек, некоторые из которых соединены линиями».

В информатике под графом понимают средство для наглядного представления состава и структуры системы.

Граф состоит из вершин и линий связи. Вершины могут быть изображены кругами, овалами, точками, прямоугольниками. Вершины могут быть связаны дугами или ребрами.

Связи между вершинами изображаются линиями. Если линия направленная (т.е. со стрелкой), то она называется дугой, если не направленная (т.е. без стрелки) то ребром. Принято считать, что одно ребро заменяет две дуги, направленные в противоположные стороны.

Граф, в котором все линии направленные, называется ориентированным графом.

Все вершины, соединенные дугой или ребром, называются смежными.

хотя термин «граф» впервые ввел в 1936 году венгерский математик Денеш Кениг .

С помощью графов часто упрощалось решение задач, сформулированных в различных областях знаний: в автоматике, электронике, физике, химии и др. Помогают графы в решении математических и экономических задач.

Схема графа, состоящая из «изолированных» вершин, называется нулевым графом. (рис.2)

Графы, в которых не построены все возможные ребра, называются неполными графами. (рис.3)

Графы, в которых построены все возможные ребра, называются полными графами. (рис.4)

Степени вершин и подсчет числа ребер.

Количество рёбер, выходящих из вершины графа, называется степенью вершины. Вершина графа, имеющая нечётную степень, называется нечетной, а чётную степень – чётной.

Если степени всех вершин графа равны, то граф называется однородным. Таким образом, любой полный граф - однородный.

рис.5

На рисунке 5 изображен граф с пятью вершинами. Степень вершины А обозначим Ст.А.


На рисунке: Ст.А = 1, Ст.Б = 2, Ст.В = 3, Ст.Г= 2, Ст.Д= 0.

Сформулируем некоторые закономерности, присущие определенным графам.

Закономерность 1 . Степени вершин полного графа одинаковы, и каждая из них на 1 меньше числа вершин этого графа.

Доказательство :

Эта закономерность очевидна уже после рассмотрения любого полного графа. Каждая вершина соединена ребром с каждой вершиной, кроме самой себя, т. е. из каждой вершины графа, имеющего n вершин, исходит n-1 ребро, что и требовалось доказать.

Закономерность 2.

Сумма степеней вершин графа число четное, равное удвоенному числу ребер графа.

Эта закономерность справедлива не только для полного, но и для любого графа. Доказательство:

Действительно, каждое ребро графа связывает две вершины. Значит, если будем складывать число степеней всех вершин графа, то получим удвоенное число ребер 2R (R - число ребер графа), т. к. каждое ребро было подсчитано дважды, что и требовалось доказать.


ТЕОРЕМА.

Число нечетных вершин любого графа четно.

Доказательство:

Рассмотрим произвольный граф Г. Пусть в этом графе число вершин, степень которых 1, равна К1; число вершин, степень которых 2, равно K2; ...; число вершин, степень которых n, равно Кn. Тогда сумму степеней вершин этого графа можно записать как


K1 + 2К2 + ЗК3 + ...+ nКn.
С другой стороны: если число ребер графа R, то из закономерности 2 известно, что сумма степеней всех вершин графа равна 2R. Тогда можно записать равенство
K1 + 2К2 + ЗК3 + ... + nКn = 2R. (1)
Выделим в левой части равенства сумму, равную числу нечетных вершин графа (К1 + К3 + ...):
K1 + 2К2 + ЗК3 + 4К4 + 5К5 + ... + nК = 2R,
(К1 + К3 + К5 +...) + (2K2 + 2Х3 +4K4 + 4К5 + ...)=2R
Вторая скобка- четное число как сумма четных чисел. Полученная сумма (2R) четное число. Отсюда (К1 + К3 + К5 +...)-четное число.
Заметим, что если полный граф имеет n вершин, то количество ребер будет равно

Действительно, количество ребер в полном графе с n вершинами определяется как число неупорядоченных пар, составленных из всех n точек-ребер графа, т. е. как число сочетаний из n элементов по 2:
Граф, не являющийся полным, можно дополнить до полного с теми же вершинами, добавив недостающие ребра. Так, например, на рисунке 3 изображен неполный граф с пятью вершинами. На рисунке 4 ребра превращающие граф в полный граф изображены другим цветом, совокупность вершин графа с этими ребрами называется дополнением графа.

1.2.Эйлеровы графы

Граф, который можно нарисовать, не отрывая карандаша от бумаги, называется эйлеровым. (рис.6)

Такими графы названы в честь учёного Леонарда Эйлера.

Закономерность 3 (вытекает из рассмотренной нами теоремы).
Невозможно начертить граф с нечетным числом нечетных вершин.
Закономерность 4.

Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине.


Закономерность 5.

Граф, имеющий всего две нечетные вершины, можно начертить, не отрывая карандаш от бумаги, при этом движение нужно начать с одной из этих нечетных вершин и закончить во второй из них.


Закономерность 6.

Граф, имеющий более двух нечетных вершин, невозможно начертить «одним росчерком».


Фигура (граф), которую можно начертить, не отрывая карандаш от бумаги, называется уникурсальной.

рис.6 (эйлеровы графы)

Связные графы.

Граф называется связным, если любые две его вершины могут быть соединены путем, т. е. последовательностью ребер, каждое следующее из которых начинается в конце предыдущего.

Граф называется несвязным, если это условие не выполняется.

рис.7рис.8
На рисунке 7, очевидно, изображен несвязный граф. Если, например, на рисунке между вершинами Д и Е провести ребро, то граф станет связным. (рис.8)
Такое ребро в теории графов (после удаления которого граф из связного превращается в несвязный) называется мостом.

Примерами мостов на рисунке 7 могли бы служить ребра ДЕ, A3, ВЖ и др., каждое из которых соединяло бы вершины «изолированных» частей графа.(рис.8)


Несвязный граф состоит из нескольких «кусков». Эти «куски» называются компонентами связности графа. Каждая компонента связности является, конечно, связным графом. Отметим, что связный граф имеет одну компоненту связности.

1.3. Задача о мостах, Леонард Эйлер и теория графов

Бывший Кенигсберг (ныне Калининград) расположен на реке Прегель. В пределах города река омывает два острова. С берегов на острова были перекинуты мосты. Старые мосты не сохранились, но осталась карта города, где они изображены.

Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам, не проходя ни по одному из них дважды? Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако не удавалось и доказать, что это даже теоретически невозможно.

Этот вопрос привлек внимание ученых разных стран. В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Мариони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них (в случае семи мостов Кёнигсберга это невозможно).

Причем, он не только решил эту конкретную задачу, но придумал общий метод решения подобных задач. Эйлер поступил следующим образом: он «сжал» сушу в точки, а мосты « вытянул» в линии, как показано на рисунке 9 а, б.

Рисунок 9


На упрощённой схеме части города (графе) мостам соответствуют линии (рёбра графа), а частям города - точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа всегда чётно. Невозможно начертить граф, который имел бы нечётное число нечётных вершин.

Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.

Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.


Давайте четко сформулируем поставленную задачу. При каком условии можно обойти все ребра графа, пройдя каждое ровно один раз? Решение оказалось очень простым. Сосчитаем, сколько ребер выходит из каждой вершины. Одни из этих чисел будут четными, а другие - нечетными. Будем и сами вершины называть четными, если из них выходит четное число ребер, и нечетными в противном случае. Как мы уже знаем: количество ребер, выходящих из данной вершины, называется степенью вершины. Вершина графа, имеющая нечетную степень, называется нечетной, а четную степень – четной.
Граф кёнигсбергских мостов имел четыре нечётные вершины, следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.
Решая задачу про кенигсбергские мосты, Эйлер установил, в частности, свойства графа:

  • Если все вершины графа четные, то можно одним росчерком (т.е. не отрывая карандаша от бумаги и не проводя дважды по одной и той же линии) начертить граф. При этом движение можно начать с любой вершины и окончить в той же вершине.

  • Граф с двумя нечетными вершинами тоже можно начертить одним росчерком. Движение надо начинать от любой нечетной вершины, а закончить на другой нечетной вершине.

  • Граф с более чем двумя нечетными вершинами невозможно начертить одним росчерком.
В задаче о кенигсбергских мостах все четыре вершины соответствующего графа нечетные, то есть нельзя пройти по всем мостам один раз и закончить путь там, где он был начат.
Деревья.

Деревом называется любой связный граф, не имеющий циклов. Договорились считать «деревом» и всякий граф, состоящий из одной (изолированной) вершины.

Циклом называется путь, в котором совпадают начало с концом.

Если все вершины цикла разные, то такой цикл называется элементарным (или простым) циклом. Если же цикл включает в себя все ребра графа по одному разу, то такой цикл называется Эйлеровой линией (рис.10а). В графе на рис.10б два цикла: 1-2-3-4-1 и 5-6-7-5.

Путем в графе от одной вершины к другой называется такая последовательность ребер, по которой можно проложить маршрут между этими вершинами. При этом никакое ребро маршрута не должно встречаться более одного раза. Вершина, от которой проложен маршрут, называется началом пути, вершина в конце маршрута - конец пути.

Висячей вершиной называется вершина, из которой выходит ровно одно ребро. (рис.12)

рис.10 а;б
Свойство 1.

Для каждой пары вершин дерева существует единственный путь, их соединяющий.


Этим свойством пользуются при нахождении всех предков в генеалогическом дереве, например, по мужской линии, любого человека, чья родословная представлена в виде генеалогического дерева, которое является «деревом» и в смысле теории графов.

Свойство 2.

Всякое ребро в дереве является мостом.


Действительно, после удаления любого ребра дерева, оно «распадается» на два дерева.

рис.12 (кружком обведены висячие вершины)
Граф, в котором две любые вершины соединены ровно одним простым путём, является деревом.

Доказательство:

Очевидно, что данный граф связен. Предположим, что в нем есть цикл. Тогда любые две вершины этого цикла соединено крайней мере двумя простыми путями. Получили противоречие, а значит, наше предположение неверно.

Дерево – это граф, в котором две любые вершины соединены ровно одним простым путём.

ЛЕММА (о висячей вершине)

В каждом дереве есть висячая вершина.

Доказательство:

Рассмотрим произвольную вершину дерева и пойдём по любому выходящему из неё ребру в другую вершину. Если из новой вершины больше рёбер не выходит, то мы остаёмся в ней, а противном случае, идём по любому другому ребру дальше. Понятно, что в этом путешествии мы никогда не сможем попасть в вершину, в которой уже побывали: это означало бы наличие цикла. Так как у графа конечное число вершин, то наше путешествие обязательно должно закончится. Но закончиться оно может только в висячей вершине. Лемма доказана.

Что можно описать с помощью графов? Обозначим области применения данного описания.

Графы используются во многих областях практической и научной деятельности людей.

Например:

Схему линий метрополитена можно рассматривать как граф;

В химии граф можно рассматривать как способ отображения структуры молекулы;

В медицине – вопрос о группе крови;

В виде графа можно представить генеалогическое дерево;

Системы классификаций в науке.

Иерархическую структуру административного управления предприятия, ВУЗа и т.д.

В информатике: файловая система диска, доменных адресов в Интернете систему, блок – схемы алгоритмов.
И еще можно привести очень много различных примеров…

Глава 2

2.1. Решение задач с помощью графов «Один день из жизни Графа»

Рассмотрим решение задач с помощью графов из школьной жизни.


Задача 1. Утром учащихся нашей школы привезли с окрестных деревень Волчино, Ольховка, Кочковатое, Павловка на занятия. На рисунке изображен граф, представляющий информацию о дорогах между четырьмя деревнями: Волчино, Ольховка, Кочковатое, Павловка. Веса вершин – названия деревень, веса линий – длина дорог в километрах.

Маршрут движения автобуса – это граф.



Задача 2. При встрече каждый из моих одноклассников пожал руку другому (каждый пожал каждому). Сколько рукопожатий было сделано, если друзей было: 1)трое; 2)четверо; 3)пятеро?

Решение.


Задача решается с помощью полных графов.

1)Встретились трое:

Количество рукопожатий равно количеству рёбер, т.е.3.

2)Встретились четверо:

Количество рёбер 6; возможно 6 рукопожатий.

3)Встретились пятеро:


В графе 10 рёбер; возможно 10 рукопожатий.

Ответ: 1)3; 2)6; 3)10.
По расписанию у нас шесть уроков: геометрия, история, информатика, география, русский язык и физика.
Задача 3. На уроке геометрии было предложено построить граф классификации геометрических объектов. Это оказалось легко сделать с помощью понятия граф.


Задача 4 . А на уроке истории нужно было составить родословное дерево. Родословное дерево. Использует графы и дворянство. Например, в генеалогическом дереве, вершины – члены рода, а связывающие их отрезки – отношения родственности.

Всем известно, что слово «граф» означает дворянский титул, например граф Лев Николаевич Толстой. На рисунке еще один граф – часть генеалогического древа графа Л.Н. Толстого. Здесь вершины – предки писателя, а ребра показывают родственные связи между ними.

Задача 5 . На уроке информатике мы познакомились с новой темой «Алгоритмы». И к моему удивлению, оказалось, что блок схема – ориентированный граф Блок – схема алгоритма представляет собой граф процесса управления некоторым исполнителем. Блоки – вершины этого графа- обозначают отдельные команды, а дуги указывают на последовательность переходов от одной команды к другой. В алгоритме любой путь начинается от вершины начала и заканчивается выходом на вершину конца. Внутри же путь может быть разным в зависимости от исходных данных.

Задача 6. На уроке географии мы рассматривали параграф. И чтоб быстрее его найти я открыла в конце учебника содержание. И к своему удивлению заметила, что структура разделов учебника отражена в виде дерева.

Задача 7 . На уроке русского языка тема «Числительные» и учитель предложила нам составить опорный конспект.

Числительные в русском языке классифицируются по составу и по значению. По составу они делятся на простые, сложные и составные. Пример простых числительных: четыре, пять. Пример сложных числительных: шестьдесят, пятьсот. Пример составных числительных: 35, 154. По значению числительные делятся на порядковые и количественные. Пример порядковых числительных: второй, девятый. Пример количественных числительных: шесть, два.

После занятий мы все побежали в столовую, где был предложен комплексный обед. Я люблю борщ, а мой сосед по парте рассольник.


Задача 8 . В столовой предлагают два первых блюда: борщ, рассольник, а также четыре вторых блюда: гуляш, котлеты, сосиски, пельмени. Укажите все обеды из двух блюд, которые может заказать посетитель. Проиллюстрируйте ответ, построив дерево возможных вариантов.

Решение.


Чтобы указать все обеды из двух блюд, будем рассуждать так.

Выберем одно первое блюдо (борщ) и будем добавлять к нему поочерёдно разные вторые

Ответ: 8 разных обедов из двух блюд.


Замечание. В задаче осуществляются два выбора, но каждый выбор - из своего множества вариантов.

Ответ: 6 сочетаний.


Придя домой, я быстро выполнила все домашние задания. И в этом мне помогла семантическая сеть – модель знаний в форме графа. В основе которой лежит идея о том, что любые знания можно представить в виде совокупности объектов (Понятий) и связей (Отношение) между ними.

После школы, на занятиях кружков «Занимательная информатика» и «Шах и МАТ», благодаря теории графов, с легкостью решали логические задачи.

Вечером мама попросила меня сходить в магазин за хлебом. Система «Хлебный магазин» состоит из следующих элементов: хлеб, продавец, покупатель, прилавок, автомобиль, шофер, грузчик, деньги, чек. Вершинами графа являются перечисленные объекты, а дуги – отношения между ними. Возвращаясь, домой с магазина, я невольно поймала себя на мыслях о графах: везде и повсюду меня окружают Графы.

Так графы стали мои лучшими друзьями. Одноклассники и учителя заметили, что у меня улучшилась успеваемость по предметам. Но я то знаю, что это благодаря «Его величеству Графу»!

Вывод

Графы – это замечательные математические объекты, с помощью, которых можно решать математические, экономические и логические задачи. Также можно решать различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Графы используются при составлении карт и генеалогических древ.

В математике даже есть специальный раздел, который так и называется: «Теория графов». Графы представляют изучаемые факты в наглядной форме. Приёмы решения логических задач с использованием графов подкупают своей естественностью и простотой, избавляют от лишних рассуждений, во многих случаях сокращающих нагрузку на память.

Теория графов в настоящее время является интенсивно развивающимся разделом дискретной математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации: коммуникационные сети, схемы электрических и электронных приборов, химические молекулы, отношения между людьми и многое другое.

Графовые задачи обладают рядом достоинств, позволяющих их использовать для развития воображения и улучшения логического мышления, применимы в решении многих геометрических задач.

Библиографический список

1. Генкин, С. А, Итенберг И. В. Ленинградские математические кружки: пособие для

внеклассной работы.-Киров, 1994г.

2.Горбачев, В.Г. Сборник олимпиадных задач по математике.- М., 2004г.

3. Игнатьев Е.И. Математическая смекалка. - Москва, 1994 г.

4.Оре, О. Графы и их применение.- Москва, 1979 г.

5.Перельман, Я.И. Весёлые задачи.- Москва, 2003г

6. Физико-математический журнал «Квант», А. Савин, №6, 1994г.

страница 1


Третья городская научная

конференция учащихся

Информатика и математика

Исследовательская работа

Круги Эйлера и теория графов в решении задач

школьной математики и информатики

Валиев Айрат

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №10 с углубленным изучением

отдельных предметов», 10 Б класс, г. Нижнекамск

Научные руководители:

Халилова Нафисе Зиннятулловна, учитель математики

Учитель информатики

г. Набережные Челны

Введение. 3

Глава 1. Круги Эйлера. 4

1.1. Теоретические основы о кругах Эйлера. 4

1.2. Решение задач, применяя круги Эйлера. 9

Глава 2.О графах 13

2.1.Теория графов. 13

2.2. Решение задач, используя графы. 19

Заключение. 22

Список литературы. 22

Введение

«Всё наше достоинство заключено в мысли.

Не пространство, не время, которых мы не можем заполнить,

возвышает нас, а именно она, наша мысль.

Будем же учиться хорошо мыслить.»

Б. Паскаль,

Актуальность. Основной задачей школы является не подача детям большого объёма знаний, а обучение учащихся самим добывать знания, умению перерабатывать эти знания и применять их в каждодневной жизни. Поставленные задачи может решить ученик, обладающий не только умением хорошо и много работать, но и ученик с развитым логическим мышлением. В связи с этим во многие школьные предметы вложены различного типа задачи, которые и развивают у детей логическое мышление. Решая эти задачи, мы применяем различные приёмы решения. Одни из приёмов решения – это использование кругов Эйлера и граф.

Цель исследования : изучение материала, применяемого на уроках математики и информатики, где используются круги Эйлера и теория графов, как один из приемов решения задач.

Задачи исследования :

1. Изучить теоретические основы понятий: «Круги Эйлера», «Графы».

2. Решить задачи школьного курса вышеназванными методами.

3. Составить подборку материала для использования учениками и учителями на уроках математики и информатики.

Гипотеза исследования: применение кругов Эйлера и графов повышают наглядность при решении задач.

Предмет исследования: понятия: «Круги Эйлера», «Графы», задачи школьного курса математики и информатики.

Глава 1. Круги Эйлера.

1.1. Теоретические основы о кругах Эйлера.

Эйлеровы круги (круги Эйлера) - принятый в логике способ моделирования, наглядного изображения отношений между объемами понятий с помощью кругов, предложенный знаменитым математиком Л. Эйлером (1707–1783).

Обозначение отношений между объемами понятий посредством кругов было применено еще представителем афинской неоплатоновской школы - Филопоном (VI в.), написавшим комментарии на «Первую Аналитику» Аристотеля.

Условно принято, что круг наглядно изображает объем одного какого-нибудь понятия. Объем же понятия отображает совокупность предметов того или иного класса предметов. Поэтому каждый предмет класса предметов можно изобразить посредством точки, помещенной внутри круга, как это показано на рисунке:

Группа предметов, составляющая вид данного класса предметов, изображается в виде меньшего круга, нарисованного внутри большего круга, как это сделано на рисунке.

https://pandia.ru/text/78/128/images/image003_74.gif" alt="пересекающиеся классы" width="200" height="100 id=">

Такое именно отношение существует между объемом понятий «учащийся» и «комсомолец». Некоторые (но не все) учащиеся являются комсомольцами; некоторые (но не все) комсомольцы являются учащимися. Незаштрихованная часть круга А отображает ту часть объема понятия «учащийся», которая не совпадает с объемом понятия «комсомолец»; незаштрихованная часть круга B отображает ту часть объема понятия «комсомолец», которая не совпадает с объемом понятия «учащийся». 3аштрихованиая часть, являющаяся общей для обоих кругов, обозначает учащихся, являющихся комсомольцами, и комсомольцев, являющихся учащимися.

Когда же ни один предмет, отображенный в объеме понятия A, не может одновременно отображаться в объеме понятия B, то в таком случае отношение между объемами понятий изображается посредством двух кругов, нарисованных один вне другого. Ни одна точка, лежащая на поверхности одного круга, не может оказаться на поверхности другого круга.

https://pandia.ru/text/78/128/images/image005_53.gif" alt="понятия с одинаковыми объемами - совпадающие круги" width="200" height="100 id=">

Такое отношение существует, например, между понятиями «родоначальник английского материализма» и «автор „Нового Органона“». Объемы этих понятий одинаковы, в них отобразилось одно и то же историческое лицо - английский философ Ф. Бэкон.

Нередко бывает и так: одному понятию (родовому) подчиняется сразу несколько видовых понятий, которые в таком случае называются соподчиненными. Отношение между такими понятиями изображается наглядно посредством одного большого круга и нескольких кругов меньшего размера, которые нарисованы на поверхности большего круга:

https://pandia.ru/text/78/128/images/image007_46.gif" alt="противоположные понятия" width="200" height="100 id=">

При этом видно, что между противоположными понятиями возможно третье, среднее, так как они не исчерпывают полностью объема родового понятия. Такое именно отношение существует между понятиями «легкий» и «тяжелый». Они исключают друг друга. Нельзя об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении, сказать, что он и легкий, и тяжелый. Но между данными понятиями есть среднее, третье: предметы бывают не только легкого и тяжелого веса, но также и среднего веса.

Когда же между понятиями существует противоречащее отношение, тогда отношение между объемами понятий изображается иначе: круг делится на две части так: А - родовое понятие, B и не-B (обозначается как B) - противоречащие понятия. Противоречащие понятия, исключают друг друга и входят в один и тот же род, что можно выразить такой схемой:

https://pandia.ru/text/78/128/images/image009_38.gif" alt="субъект и предикат определения" width="200" height="100 id=">

Иначе выглядит схема отношения между объемами субъекта и предиката в общеутвердительном суждении, не являющемся определением понятия. В таком суждении объем предиката больше объема субъекта, объем субъекта целиком входит в объем предиката. Поэтому отношение между ними изображается посредством большого и малого кругов, как показано на рисунке:

Школьные библиотеки" href="/text/category/shkolmznie_biblioteki/" rel="bookmark">школьной библиотеке , 20 - в районной. Сколько из пятиклассников:

а) не являются читателями школьной библиотеки;

б) не являются читателями районной библиотеки;

в) являются читателями только школьной библиотеки;

г) являются читателями только районной библиотеки;

д) являются читателями обеих библиотек?

3. Каждый ученик в классе изучает либо английский, либо французский язык , либо оба этих языка. Английский язык изучают 25 человек, французский - 27 человек, а тот и другой -18 человек. Сколько всего учеников в классе?

4. На листе бумаги начертили круг площадью 78 см2 и квад­рат площадью 55 см2. Площадь пересечения круга и квад­рата равна 30 см2. Не занятая кругом и квадратом часть листа имеет площадь 150 см2. Найдите площадь листа.

5. В детском саду 52 ребенка. Каждый из них любит либо пирожное, либо мороженое, либо и то, и другое. Половина детей любит пирожное, а 20 человек - пирожное и мороженое. Сколько детей любит мороженое?

6. В ученической производственной бригаде 86 старшеклас­сников. 8 из них не умеют работать ни на тракторе, ни на комбайне. 54 ученика хорошо овладели трактором, 62 - комбайном. Сколько человек из этой бригады мо­гут работать и на тракторе, и на комбайне?

7. В классе 36 учеников. Многие из них посещают круж­ки: физический (14 человек), математический (18 чело­век), химический (10 человек). Кроме того, известно, что 2 человека посещают все три кружка; из тех, кто по­сещает два кружка, 8 человек занимаются в математи­ческом и физическом кружках, 5 - в математическом и химическом, 3 - в физическом и химическом. Сколь­ко человек не посещают никаких кружков?

8. 100 шестиклассников нашей школы участвовали в опро­се, в ходе которого выяснялось, какие компьютерные игры им нравятся больше: симуляторы, квесты или стратегии. В результате 20 опрошенных назвали симуляторы, 28 - квесты, 12 - стратегии. Выяснилось, что 13 школьников отдают одинаковое предпочтение симуляторам и квестам, 6 учеников - симуляторам и стратегиям, 4 ученика - квестам и стратегиям, а 9 ребят совершенно равнодушны к названным компьютерным играм. Некоторые из школьников ответили, что одинаково увлекаются и симуляторами, и квестами, и стратегиями. Сколько таких ребят?

Ответы

https://pandia.ru/text/78/128/images/image012_31.gif" alt="Овал: А " width="105" height="105">1.

А – шахматы 25-5=20 – чел. умеют играть

В – шашки 20+18-20=18 – чел играют и в шашки, и в шахматы

2. Ш – множество посетителей школьной библиотеки

Р – множество посетителей районной библиотеки

https://pandia.ru/text/78/128/images/image015_29.gif" width="36" height="90">.jpg" width="122 height=110" height="110">

5. 46. П – пирожное, М – мороженое

6 – детей любят пирожное

6. 38. Т – трактор, К – комбайн

54+62-(86-8)=38 – умеют работать и на тракторе и на комбайне

графами" и систематически изучать их свойства.

Основные понятия.

Первое из основных понятий теории графов - это понятие вершины. В теории графов оно принимается в качестве первичного и не определяется. Его нетрудно представить себе на собственном интуитивном уровне. Обычно вершины графа наглядно изображаются в виде окружностей, прямоугольников другими фигурами (рис.1). Хотя бы одна вершина должна обязательно присутствовать в каждом графе.

Другое основное понятие теории графов - дуги. Обычно дуги представляют собой отрезки прямых или кривых, соединяющих вершины. Каждый из двух концов дуги должен совпадать с какой-нибудь вершиной. Случай, когда оба конца дуги совпадают с одной и той же вершиной, не исключается. Например, на рис.2 - допустимые изображения дуг, а на рис.3 - недопустимые:

В теории графов используются дуги двух типов - ненаправленными или направленными (ориентированными). Граф, содержащий только ориентированные дуги, называется ориентированным графом или орграфом.

Дуги могут быть однонаправленными, при этом каждая дуга имеет только одно направление, или двунаправленными.

В большинстве применений можно без потери смысла заменить ненаправленную дугу на двунаправленную, а двунаправленную - на две однонаправленных дуги. Например, так, как показано на рис. 4.

Как правило, граф либо сразу строится таким образом, чтобы все дуги имели одинаковую характеристику направленности (например, все - однонаправленные), либо приводится к такому виду путем преобразований. Если дуга AB - направленная, то это значит, что из двух ее концов один (A) считается началом, а второй (B) - концом. В этом случае говорят, что начало дуги AB есть вершина A, а конец - вершина B, если дуга направлена от A к B, или что - дуга AB исходит из вершины A и входит B (рис. 5).

Две вершины графа, соединенные какой-либо дугой (иногда, независимо от ориентации дуги) называют смежными вершинами.

Важным понятием при исследовании графов является понятие пути. Путь A1,A2,...An определяется как конечная последовательность (кортеж) вершин A1,A2,...An и дуг A1, 2,A2 ,3,...,An-1, n последовательно соединяющих эти вершины.

Важным понятием в теории графов является понятие связности. Если для любых двух вершин графа существует хотя бы один соединяющий их путь - граф называется связным.

Например, если изобразить в виде графа систему кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам, то такой граф, очевидно, является связным. Можно ли утверждать, что система кровообращения двух произвольных людей является несвязным графом? Очевидно, нет, поскольку в природе наблюдаются т. н. “сиамские близнецы”.

Связность может быть не только качественной характеристикой графа (связный/несвязный), но и количественной.

Граф называется K-связным, если каждая его вершина связана с K других вершин. Иногда говорят о слабо - и сильносвязанных графах. Эти понятия субъективны. Исследователь называет граф сильносвязанным, если для каждой его вершины количество смежных вершин, по мнению исследователя, велико.

Иногда связность определяют как характеристику не каждой, а одной (произвольной) вершины. Тогда появляются определения типа: граф называется K-связным, если хотя бы одна его вершина связана с K других вершин.

Некоторые авторы определяют связность как экстремальное значение количественной характеристики. Например, граф является K-связным, если в графе существует хотя бы одна вершина, связанная с K смежными вершинами и не существует ни одной вершины, связанной с более чем K смежными вершинами.

Например, детский рисунок человека (рис. 6) представляет собой граф с максимальной связностью равной 4.

Еще одна характеристика графа, исследуемая в ряде задач, часто называется мощностью графа. Эта характеристика определяется как количество дуг, связывающих две вершины. При этом дуги, имеющие встречное направление, часто рассматриваются раздельно.

Например, если вершины графа представляю собой узлы обработки информации , а дуги - однонаправленные каналы передачи информации между ними, то надежность системы определяется не суммарным количеством каналов, а наименьшим количеством каналов в любом направлении.

Мощность, как и связность, может определяться как для каждой пары вершин графа, так и для некоторой (произвольной) пары.

Существенная характеристика графа - его размерность. Под этим понятием обычно понимают количество вершин и дуг, существующих в графе. Иногда эта величина определяется как сумма количеств элементов обоих видов, иногда - как произведение, иногда - как количество элементов только одного (того или иного) вида.

Разновидности графов.

Объекты, моделируемые графами, имеют весьма разнообразную природу. Стремление отразить эту специфику привело к описанию большого количества разновидностей графов. Процесс этот продолжается и в настоящее время. Многие исследователи для своих конкретных целей вводят новые разновидности и выполняют их математическое исследование с большим или меньшим успехом.

В основе всего этого многообразия лежат несколько довольно простых идей, о которых мы здесь и будем говорить.

Окраска

Окраска графов - весьма популярный способ модификации графов.

Этот прием позволяет, и повысить наглядность модели и увеличить математическую загруженность. Способы введения окраски могут быть различными. По тем или иным правилам окрашиваются как дуги, так и вершины. Окраска может быть однократно определена или меняться с течением времени (т. е. при приобретении графом каких-либо свойств); цвета можно преобразовывать по тем или иным правилам, и т. д.

Например, пусть граф представляет собой модель кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам. Окрасим артерии в красный цвет, а вены - в синий. Тогда очевидно справедливость следующего утверждения - в рассматриваемом графе (рис. 8) существуют, и при этом только две, вершины, имеющие исходящие красные дуги (на рисунке красный цвет изображен жирно).

Дольность

Иногда элементы объекта, моделируемые вершинами, имеют существенно различный характер. Или к реально существующим в объекте элементам в процессе формализации оказывается полезным добавить некоторые фиктивные элементы. В этом, и некоторых других случаях, вершины графа естественно разделить на классы (доли). Граф, содержащий вершины двух типов, называют двудольным и т. д. При этом в число ограничений графа вносятся правила, касающиеся взаимоотношений вершин разных типов. Например: “не существует дуги, которая бы соединяла вершины одного типа”. Одна из разновидностей графов такого рода называется “сеть Петри” (рис. 9) и имеет достаточно широкое распространение. Более подробно сети Петри будут рассмотрены в следующей статье этого цикла.

Понятие дольности может быть применено не только к вершинам, но и к дугам.

2.2. Решение задач, используя графы.

1. Задача о Кенигсбергских мостах. На рис. 1 представлен схематический план центральной части города Кенигсберг (ныне Калининград), включающий два берега реки Перголя, два острова в ней и семь соединяющих мостов. Задача состоит в том, чтобы обойти все четыре части суши, пройдя по каждому мосту один раз, и вернуться в исходную точку. Эта задача была решена (показано, что решение не существует) Эйлером в 1736 году. (рис. 10).

2. Задача о трех домах и трех колодцах. Имеется три дома и три колодца, каким-то образом расположенные на плоскости. Провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались (рис. 2). Эта задача была решена (показано, что решение не существует) Куратовским в 1930 году. (рис. 11).

3. Задача о четырех красках. Разбиение на плоскости на непересекающиеся области называется картой. Области на карте называются соседними, если они имеют общую границу. Задача состоит в раскрашивании карты таким образом, чтобы никакие две соседние области не были закрашены одним цветом (рис. 12). С конца позапрошлого века известна гипотеза, что для этого достаточно четырех красок. В 1976 году Аппель и Хейкен опубликовали решение задачи о четырех красках, которое базировалось на переборе вариантов с помощью компьютера. Решение этой задачи «программным путем» явилось прецедентом, породившим бурную дискуссию, которая отнюдь не закончена. Суть опубликованного решения состоит в том, чтобы перебрать большое, но конечное число (около 2000) типов потенциальных контрпримеров к теореме о четырех красках и показать, что ни один случай контрпримером не является. Этот перебор был выполнен программой примерно за тысячу часов работы суперкомпьютера. Проверить «вручную» полученное решение невозможно – объем перебора выходит далеко за рамки человеческих возможностей. Многие математики ставят вопрос: можно ли считать такое «программное доказательство» действительным доказательством? Ведь в программе могут быть ошибки… Методы формального доказательства правильности программ не применимы к программам такой сложности, как обсуждаемая. Тестирование не может гарантировать отсутствие ошибок и в данном случае вообще невозможно. Таким образом, остается уповать на программистскую квалификацию авторов и верить, что они сделали все правильно.

4.

Задачи Дьюдени.

1. Смит, Джонс и Робинсон работают в одной поездной бригаде машинистом, кондуктором и кочегаром. Профессии их названы не обязательно в том же порядке, что и фамилии. В поезде, который обслуживает бригада, едут трое пассажиров с теми же фамилиями. В дальнейшем каждого пассажира мы будем почтительно называть «мистер» (м-р)

2. М-р Робинсон живет в Лос-Анджелесе.

3. Кондуктор живет в Омахе.

4. М-р Джонс давно позабыл всю алгебру, которой его учили в колледже .

5. Пассажир – однофамилец кондуктора живет в Чикаго.

6. Кондуктор и один из пассажиров, известный специалист по математической физике, хотя в одну церковь.

7. Смит всегда выигрывает у кочегара, когда им случается встречаться за партией в бильярд.

Как фамилия машиниста? (рис.13)

Здесь 1-5 – номера ходов, в скобках – номера пунктов задачи, на основании которых сделаны ходы (выводы). Далее следует из п.7, что кочегар не Смит, следовательно, Смит-машинист.

Заключение

Анализ теоретического и практического материала по исследуемой теме позволяет сделать выводы об успешности применения кругов Эйлера и графов для развития логического мышления детей, привития интереса к изучаемому материалу, применению наглядности на уроках, а так же трудные задачи свести к легким для понимания и решения.

Список литературы

1. «Занимательные задачи по информатике» , Москва, 2005

2. «Сценарии школьных праздников» Е. Владимирова, Ростов-на-Дону, 2001

3. Задачи для любознательных. , М., Просвещение, 1992г,

4. Внеклассная работа по математике, Саратов, Лицей, 2002г.

5. Удивительный мир чисел. , ., М., Просвещение, 1986г.,

6. Алгебра: учебник для 9 класса . , и др. под ред. ,- М.: Просвешение, 2008