Рефераты Изложения История

Германий элемент. Свойства, добыча и применение германия

Германий

ГЕРМА́НИЙ -я; м. Химический элемент (Ge), твёрдое вещество серовато-белого цвета с металлическим блеском (является основным полупроводниковым материалом). Пластинка германия.

Герма́ниевый, -ая, -ое. Г-ое сырьё. Г. слиток.

герма́ний

(лат. Germanium), химический элемент IV группы периодической системы. Название от латинского Germania - Германия, в честь родины К. А. Винклера. Серебристо-серые кристаллы; плотность 5,33 г/см 3 , t пл 938,3ºC. В природе рассеян (собственные минералы редки); добывают из руд цветных металлов. Полупроводниковый материал для электронных приборов (диоды, транзисторы и др.), компонент сплавов, материал для линз в ИК-приборах, детекторов ионизирующего излучения.

ГЕРМАНИЙ

ГЕРМА́НИЙ (лат. Germanium), Gе (читается «гертемпманий»), химический элемент с атомным номером 32, атомная масса 72,61. Природный германий состоит из пяти изотопов с массовыми числами 70 (содержание в природной смеси 20,51% по массе), 72 (27,43%), 73 (7,76%), 74 (36,54%), и 76 (7,76%). Конфигурация внешнего электронного слоя 4s 2 p 2 . Степени окисления +4, +2 (валентности IV, II). Расположен в группе IVA, в 4 периоде в периодической системе элементов.
История открытия
Был открыт К. А. Винклером (см. ВИНКЛЕР Клеменс Александр) (и назван в честь его родины - Германии) в 1886 при анализе минерала аргиродита Ag 8 GeS 6 после того, как существование этого элемента и некоторые его свойства были предсказаны Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) .
Нахождение в природе
Содержание в земной коре 1,5·10 -4 % по массе. Относится к рассеянным элементам. В природе в свободном виде не встречается. Содержится в виде примеси в силикатах, осадочных железных, полиметаллических, никелевых и вольфрамовых рудах, углях, торфе, нефтях, термальных водах и водорослях. Важнейшие минералы: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , стоттит FeGe(OH) 6 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, аргиродит Ag 8 GeS 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
Получение германия
Для получения германия используют побочные продукты переработки руд цветных металлов, золу от сжигания углей, некоторые продукты коксохимии. Сырье, содержащее Ge, обогащают флотацией. Затем концентрат переводят в оксид GeO 2 , который восстанавливают водородом (см. ВОДОРОД) :
GeO 2 + 4H 2 = Ge + 2H 2 O
Германий полупроводниковой чистоты с содержанием примесей 10 -3 -10 -4 % получают зонной плавкой (см. ЗОННАЯ ПЛАВКА) , кристаллизацией (см. КРИСТАЛЛИЗАЦИЯ) или термолизом летучего моногермана GeH 4:
GeH 4 = Ge + 2H 2 ,
который образуется при разложении кислотами соединений активных металлов с Ge - германидов:
Mg 2 Ge + 4HCl = GeH 4 – + 2MgCl 2
Физические и химические свойства
Германий - вещество серебристого цвета с металлическим блеском. Кристаллическая решетка устойчивой модификации (Ge I), кубическая, гранецентрированная типа алмаза, а = 0,533 нм (при высоких давлениях получены три другие модификации). Температура плавления 938,25 °C, кипения 2850 °C, плотность 5,33 кг/дм 3 . Обладает полупроводниковыми свойствами, ширина запрещенной зоны 0,66 эВ (при 300 К). Германий прозрачен для инфракрасного излучения с длиной волны больше 2 мкм.
По химическим свойствам Ge напоминает кремний (см. КРЕМНИЙ) . При обычных условиях устойчив к кислороду (см. КИСЛОРОД) , парам воды, разбавленным кислотам. В присутствии сильных комплексообразователей или окислителей, при нагревании Ge реагирует с кислотами:
Ge + H 2 SO 4 конц = Ge(SO 4) 2 + 2SO 2 + 4H 2 O,
Ge + 6HF = H 2 + 2H 2 ,
Ge + 4HNO 3 конц. = H 2 GeO 3 + 4NO 2 + 2H 2 O
Ge реагирует с царской водкой (см. ЦАРСКАЯ ВОДКА) :
Ge + 4HNO 3 + 12HCl = GeCl 4 + 4NO + 8H 2 O.
С растворами щелочей Ge взаимодействует в присутствии окислителей:
Ge + 2NaOH + 2H 2 O 2 = Na 2 .
При нагревании на воздухе до 700 °C Ge загорается. Ge легко взаимодействует с галогенами (см. ГАЛОГЕНЫ) и серой (см. СЕРА) :
Ge + 2I 2 = GeI 4
С водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , углеродом (см. УГЛЕРОД) германий непосредственно в реакции не вступает, соединения с этими элементами получают косвенным путем. Например, нитрид Ge 3 N 4 образуется при растворении дииодида германия GeI 2 в жидком аммиаке:
GeI 2 + NH 3 жидк -> n -> Ge 3 N 4
Оксид германия (IV), GeO 2 , - белое кристаллическое вещество, существующее в двух модификациях. Одна из модификаций частично растворима в воде с образование сложных германиевых кислот. Проявляет амфотерные свойства.
С щелочами GeO 2 взаимодействует как кислотный оксид:
GeO 2 + 2NaOH = Na 2 GeO 3 + H 2 O
GeO 2 взаимодействует с кислотами:
GeO 2 + 4HCl = GeCl 4 + 2H 2 O
Тетрагалогениды Ge - неполярные соединения, легко гидролизующиеся водой.
3GeF 4 + 2H 2 O = GeO 2 + 2H 2 GeF 6
Тетрагалогениды получают прямым взаимодействием:
Ge + 2Cl 2 = GeCl 4
или термическим разложением:
BaGeF 6 = GeF 4 ­ + BaF 2
Гидриды германия по химическим свойствам подобны гидридам кремния, но моногерман GeH 4 более устойчив, чем моносилан SiH 4 . Германы образуют гомологические ряды Ge n H 2n+2 , Ge n H 2n и другие, но эти ряды короче, чем у силанов.
Моногерман GeH 4 - газ, устойчивый на воздухе, не реагирующий с водой. При длительном хранении разлагается на H 2 и Ge. Получают моногерман восстановлением диоксида германия GeO 2 борогидридом натрия NaBH 4:
GeO 2 + NaBH 4 = GeH 4 ­ + NaBO 2 .
Очень неустойчивый монооксид GeO образуется при умеренном нагревании смеси германия и диоксида GeO 2:
Ge + GeO 2 = 2GeO.
Соединения Ge (II) легко диспропорционируют с выделением Ge:
2GeCl 2 -> Ge + GeCl 4
Дисульфида германия GeS 2 - белое аморфное или кристаллическое вещество, получается осаждением H 2 S из кислых растворов GeCl 4:
GeCl 4 + 2H 2 S = GeS 2 Ї + 4HCl
GeS 2 растворяется в щелочах и сульфидах аммония или щелочных металлов:
GeS 2 + 6NaOH = Na 2 + 2Na 2 S,
GeS 2 + (NH 4) 2 S = (NH 4) 2 GeS 3
Ge может входить в состав органических соединений. Известны (CH 3) 4 Ge, (C 6 H 5) 4 Ge, (CH 3) 3 GeBr, (C 2 H 5) 3 GeOH и другие.
Применение
Германий - полупроводниковый материал, применяется в технике и радиоэлектронике при производстве транзисторов и микросхем. Тонкие пленки Ge, нанесенные на стекло, применяют в качестве сопротивлений в радарных установках. Сплавы Ge с металлами используются в датчиках и детекторах. Диоксид германия применяют в производстве стекол, пропускающих инфракрасное излучение.

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "германий" в других словарях:

    Химический элемент, открытый в 1886 г. в редком минерале аргиродите, найденном в Саксонии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. германий (назв. в честь родины ученого, открывшего элемент) хим. элемент,… … Словарь иностранных слов русского языка

    - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886 … Современная энциклопедия

    германий - Ge Элемент IV группы Периодич. системы; ат. н. 32, ат. м. 72,59; тв. вещ во с металлич. блеском. Природный Ge — смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Ge предсказал в 1871 г. Д. И.… … Справочник технического переводчика

    Германий - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886. … Иллюстрированный энциклопедический словарь

    - (лат. Germanium) Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Назван от латинского Germania Германия, в честь родины К. А. Винклера. Серебристо серые кристаллы; плотность 5,33 г/см³, tпл 938,3 … Большой Энциклопедический словарь

    - (символ Ge), бело серый металлический элемент IV группы периодической таблицы МЕНДЕЛЕЕВА, в которой были предсказаны свойства еще не открытых элементов, в частности, германия (1871 г.). Открыт элемент в 1886 г. Побочный продукт выплавки цинковых… … Научно-технический энциклопедический словарь

    Ge (от лат. Germania Германия * a. germanium; н. Germanium; ф. germanium; и. germanio), хим. элемент IV группы периодич. системы Менделеева, ат.н. 32, ат. м. 72,59. Природный Г. состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge… … Геологическая энциклопедия

    - (Ge), синтетич. монокристалл, ПП, точечная группа симметрии m3m, плотность 5,327 г/см3, Tпл=936 °С, тв. по шкале Мооса 6, ат. м. 72,60. Прозрачен в ИК области l от 1,5 до 20 мкм; оптически анизотропен, для l=1,80 мкм коэфф. преломления n=4,143.… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 полупроводник (7) экасилиций (1) элемент (159) … Словарь синонимов

    ГЕРМАНИЙ - хим. элемент, символ Ge (лат. Germanium), ат. н. 32, ат. м. 72,59; хрупкое серебристо серое кристаллическое вещество, плотность 5327 кг/м3, bил = 937,5°С. В природе рассеян; добывают его главным образом при переработке цинковой обманки и… … Большая политехническая энциклопедия

ОПРЕДЕЛЕНИЕ

Германий - тридцать второй элемент Периодической таблицы. Обозначение - Ge от латинского «germanium». Расположен в четвертом периоде, IVA группе. Относится к полуметаллам. Заряд ядра равен 32.

В компактном состоянии германий имеет серебристый цвет (рис. 1) и по внешнему виду похож на металл. При комнатной температуре он устойчив к действию воздуха, кислорода, воды, соляной и разбавленной серной кислот.

Рис. 1. Германий. Внешний вид.

Атомная и молекулярная масса германия

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии германий существует в виде одноатомных молекул Ge, значения его атомной и молекулярной масс совпадают. Они равны 72,630.

Изотопы германия

Известно, что в природе германий может находиться в виде пяти стабильных изотопов 70 Ge (20,55%), 72 Ge (20,55%), 73 Ge (7,67%), 74 Ge (36,74%) и 76 Ge (7,67%). Их массовые числа равны 70, 72, 73, 74 и 76 соответственно. Ядро атома изотопа германия 70 Ge содержит тридцать два протона и тридцать восемь нейтронов, остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные нестабильные радиоактивные изотопы германия с массовыми числами от 58-ми до 86-ти, среди которых наиболее долгоживущим является изотоп 68 Ge с периодом полураспада равным 270,95 суток.

Ионы германия

На внешнем энергетическом уровне атома германия имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 .

В результате химического взаимодействия германий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ge 0 -2e → Ge 2+ ;

Ge 0 -4e → Ge 4+ .

Молекула и атом германия

В свободном состоянии германий существует в виде одноатомных молекул Ge. Приведем некоторые свойства, характеризующие атом и молекулу германия:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Рассчитайте массовые доли элементов, входящих в состав оксида германия (IV), если его молекулярная формула имеет вид GeO 2 .
Решение Массовая доля элемента в составе какой-либо молекулы определяется по формуле:

ω (Х) = n × Ar (X) / Mr (HX) × 100%.

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59. Природный германий состоит из 4 стабильных изотопов 70 Ge (20,55%), 72 Ge (27,37%), 73 Ge (7,67%), 74 Ge (36,74%) и одного радиоактивного 76 Ge (7,67%) с периодом полураспада 2.10 6 лет. Открыт в 1886 немецким химиком К. Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Германий в природе

Германий относится к . Распространённость германия в (1-2).10 -4 %. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах и . Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют. Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в , и . Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений . Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых . Германий извлекается кислотным , возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д. Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

И даже раньше кремния германий стал важнейшим полупроводниковым материалом.

Здесь уместен вопрос: а что же такое полупроводники и полупроводимосгь? Однозначно ответить на него иногда затрудняются даже специалисты. «Точное определение полупроводимости затруднительно и зависит от того, какое свойство полупроводников рассматривается», - этот уклончивый ответ заимствован из вполне респектабельного научного труда по полупроводникам. Есть, правда, и очень четкое определение: «Полупроводник - один проводник на два вагона», - но это уже из области фольклора...

Главное в элементе № 32 то, что он полупроводник. К объяснению этого его свойства мы еще вернемся. Пока же о германии как о физикохимической «личности».

Германий как он есть

Вероятно, подавляющему большинству читателей видеть германий не приходилось. Элемент этот достаточно редкий, дорогой, предметов ширпотреба из него не делают, а германиевая «начинка» полупроводниковых приборов имеет настолько малые размеры, что разглядеть, какой он, германий , трудно, даже если разломать корпус прибора. Поэтому расскажем об основных свойствах германия, его внешнем виде, особенностях. А вы попробуйте мысленно проделать те несложные операции, которые не раз приходилось делать автору.

Извлекаем из упаковки стандартный слиток германия. Это небольшое тело почти правильной цилиндрической формы, диаметром от 10 до 35 и длиной в несколько десятков миллиметров. Некоторые справочники утверждают, что элемент № 32 серебристого цвета, но это не всегда верно: цвет германия зависит от обработки его поверхности . Иногда он кажется почти черным, иногда похож на сталь, но иногда бывает и серебристым.

Рассматривая германиевый слиток, не забывайте, что он стоит примерно столько же, сколько золотой, и хотя бы поэтому ронять его на пол не следует. Но есть и другая причина, намного более важная: германий почти так же хрупок, как стекло, и может соответственно себя вести. Мне приходилось видеть, как после такой неудачи небрежный экспериментатор долго ползал по полу, пытаясь собрать все осколки до единого... По внешнему виду германий нетрудно спутать с кремнием. Эти элементы не только конкуренты, претендующие на звание главного полупроводникового материала, но и аналоги. Впрочем, несмотря на сходство многих технических свойств и внешнего облика, отличить германиевый слиток от кремниевого довольно просто: германий в два с лишним раза тяжелее кремния (плотность 5,33 и 2,33 г/см 3 соответственно).

Последнее утверждение нуждается в уточнении, хотя, казалось бы, цифры исключают комментарий. Дело в том, что цифра 5,33 относится к германию-1 - самой распространенной и самой важной из пяти аллотропических модификаций элемента № 32. Одна из них аморфная, четыре кристаллические. Из кристаллических германий-1 самый легкий. Его кристаллы построены так же, как кристаллы алмаза , но если для углерода такая структура определяет и максимальную плотность, то у германия есть и более плотные «упаковки». Высокое давление при умеренном нагреве (30 тыс. атм и 100°C) преобразует Ge-I в Ge-II с кристаллической решеткой, как у белого олова .

Подобным же образом можно получить еще более плотные, чем Ge-II, Ge-III и Ge-IV

Все «необычные» модификации кристаллического германия превосходят Ge-I и электропроводностью. Упоминание именно об этом свойстве не случайно: величина удельной электропроводности (или обратная величина - удельное сопротивление) для элемента-полупроводника особенно важна.

Но что такое полупроводник?

Формально, полупроводник - это вещество с удельным сопротивлением от тысячных долей до миллионов омов на 1 см. Рамки «от» и «до» очень широкие, но место германия в этом диапазоне совершенно определенное. Сопротивление сантиметрового кубика из чистого германия при 18°С равно 72 ом. При 19°С сопротивление того же кубика уменьшается до 68 ом. Это вообще характерно для полупроводников - значительное изменение электрического сопротивления при незначительном изменении температуры. С ростом температуры сопротивление обычно падает. Оно существенно изменяется и под влиянием облучения, и при механических деформациях.

Замечательна чувствительность германия (как, впрочем, и других полупроводников) не только к внешним воздействиям. На свойства германия сильно влияют даже ничтожные количества примесей. Не менее важна химическая природа примесей.

Добавка элемента V группы позволяет получить полупроводник с электронным типом проводимости. Так готовят ГЭС (германий электронный, легированный сурьмой). Добавив же элемент III группы, мы создадим в нем дырочный тип проводимости (чаще всего это ГДГ - германий дырочный, легированный галлием).

Напомним, что «дырки» - это места, освобожденные электронами, перешедшими на другой энергетический уровень. «Квартиру», освобожденную переселенцем, может тут же занять его сосед, но у того тоже была своя квартира. Переселения совершаются одно за другим, и дырка сдвигается.

Сочетание областей с электронной и дырочной проводимостью легло в основу самых важных полупроводниковых приборов - диодов и транзисторов. Например, вплавляя в пластинку ГЭС индий и создавая таким образом область с дырочной проводимостью, получаем выпрямляющее устройство - диод. Он пропускает электрический ток преимущественно в одном направлении - из области с дырочной проводимостью к электронной. Вплавив индий с обеих сторон пластинки ГЭС, превращаем эту пластинку в основу транзистора.

Первый в мире германиевый транзистор создан в 1948 г., а уже через 20 лет выпускались сотни миллионов таких приборов. Германиевые диоды и триоды нашли широкое применение в радиоприемниках и телевизорах, счетно-решающих устройствах и в разнообразной измерительной аппаратуре.

Germanium применяют и в других первостепенно важных областях современной техники: для измерения низких температур, для обнаружения инфракрасного излучения и т. д. Для всех этих областей нужен германий очень высокой чистоты - физической и химической. Химическая чистота такая, чтобы количество вредных примесей не превышало одной десятимиллионной процента (107%). Физическая чистота - это минимум дислокаций, нарушений в кристаллической структуре. Для достижения ее выращивают монокристаллический германий: весь слиток - один кристалл.

Ради этой немыслимой чистоты

В земной коре германия не очень мало - 7*10 -4 % ее массы. Это больше, чем свинца, серебра , вольфрама. Германий обнаружен на Солнце и в метеоритах. Германий есть на территории всех стран. Но промышленными месторождениями минералов германия, по-видимому, не располагает ни одна промышленно развитая страна. Германий очень рассеян. Минералы, в которых этого элемента больше 1%, - аргиродит , германит , ультрабазит и другие, включая открытые лишь в последние десятилетия реньерит, штотит, конфильдит и плюмбогерманит - большая редкость. Они не в состоянии покрыть мировую потребность в этом важном элементе.

А основная масса земного германия рассеяна в минералах других элементов, в углях, в природных водах, в почве и живых организмах. В каменном угле, например, содержание германия может достигать десятой доли процента. Может, но достигает далеко не всегда. В антраците, например, его почти нет... Словом, германий - всюду и нигде.

Поэтому способы концентрирования германия очень сложны и разнообразны. Они зависят прежде всего от вида сырья и содержания в нем этого элемента.

Руководителем комплексного изучения и решения германиевой проблемы в СССР был академик Николай Петрович Сажин. О том, как зарождалась советская промышленность полупроводников, рассказано в его статье, опубликованной в журнале «Химия и жизнь» за полтора года до кончины этого выдающегося ученого и организатора науки.

Чистая двуокись германия впервые в нашей стране была получена в начале 1941 г. Из нее сделали германиевое стекло с очень высоким коэффициентом преломления света. Исследования элемента № 32 и способов его возможного получения возобновились после войны, в 1947 г. Теперь германий интересовал ученых именно как полупроводник.

Новые методы анализа помогли выявить новый источник германиевого сырья - надсмольные воды коксохимических заводов. Германия в них не больше 0,0003%, но с помощью дубового экстракта из них оказалось несложно осадить германий в виде таннидного комплекса. Главная составляющая таннина - сложный эфир глюкозы. Он способен связывать germanium, даже если концентрация этого элемента в растворе исчезающе мала.

Из полученного осадка, разрушив органику, нетрудно получить концентрат, содержащий до 45% двуокиси германия.

Дальнейшие превращения уже мало зависят от вида сырья. Восстанавливают германий водородом (так поступал еще Винклер), но прежде нужно отделить окись германия от многочисленных примесей. Для решения этой задачи оказалось очень полезным удачное сочетание свойств одного из соединений германия.

Четыреххлористый германий GeCl 4 - летучая жидкость с низкой температурой кипения (83,1°С). Следовательно, ее удобно очищать дистилляцией и ректификацией (процесс идет в кварцевых колоннах с насадкой). Четыреххлористый германий почти нерастворим в концентрированной соляной кислоте. Следовательно, для очистки GeCl 4 можно применить растворение примесей соляной кислотой.

Очищенный GeCl4 обрабатывают водой, из которой с помощью ионообменных смол предварительно изъяты практически все загрязнения. Признаком нужной чистоты служит увеличение удельного сопротивления воды до 15-20 млн. Ом-см.

Под действием воды происходит гидролиз четыреххлористого германия: GeCl 4 + 2H 2 O → GeO 2 + 4HCl. Заметим, что это «записанное наоборот» уравнение реакции, в которой получают четыреххлористый германий. Затем следует восстановление GeO 2 очищенным водородом: GeO 2 + 2H 2 → Ge +2H 2 O. Получается порошкообразный германий, который сплавляют, а затем дополнительно очищают методом зонной плавки. Между прочим, этот метод очистки материалов был разработан в 1952 г. именно для очистки полупроводникового германия.

Примеси, необходимые для придания германию того или иного типа проводимости (электронной или дырочной), вводят на последних стадиях производства, т. е. при зонной плавке и в процессе выращивания монокристалла.

С тех пор как в 1942 г. было установлено, что в радиолокационных системах часть электронных ламп выгодно заменять полупроводниковыми детекторами, интерес к германию рос из года в год. Изучение этого ранее нигде не применявшегося элемента способствовало развитию науки в целом и прежде всего физики твердого тела. А значение полупроводниковых приборов - диодов, транзисторов, термисторов, тензорезисторов, фотодиодов и других - для развития радиоэлектроники и техники в целом настолько велико и настолько известно, что говорить о нем. в возвышенных тонах еще раз как-то неудобно. До 1965 г. большая часть полупроводниковых приборов делалась на германиевой основе. Но в последующие годы стал развиваться процесс постепенного вытеснения «экасилиция» самим силициумом.

Германий под натиском кремния

Кремниевые полупроводниковые приборы выгодно отличаются от германиевых прежде всего лучшей работоспособностью при повышенных температурах и меньшими обратными токами. Большим преимуществом кремния оказалась и устойчивость его двуокиси к внешним воздействиям. Именно она позволила создать более прогрессивную - планарную технологию производства полупроводниковых приборов, состоящую в том, что кремниевую пластинку нагревают в кислороде или смеси кислорода с водяным паром и она покрывается защитным слоем SiO 2 .

Вытравив затем в нужных местах «окошки», через них вводят легирующие примеси, здесь же присоединяют контакты, а прибор в целом тем временем защищен от внешних воздействии. Для германия такая технология пока невозможна: устойчивость его двуокиси недостаточна. Под натиском кремния, арсенида галлия и других полупроводников германий утратил положение главного полупроводникового материала. В 1968 г. в США производилось уже намного больше кремниевых транзисторов, чем германиевых. Сейчас мировое производство германия, по оценкам зарубежных специалистов, составляет 90-100 т в год. Его позиции в технике достаточно прочны.

  • Во-первых, полупроводниковый германий заметно дешевле полупроводникового кремния.
  • Во-вторых, некоторые полупроводниковые приборы проще и выгоднее делать по-прежнему из германия, а не из кремния.
  • В-третьих, физические свойства германия делают его практически незаменимым при изготовлении приборов некоторых типов, в частности туннельных диодов.

Все это дает основание полагать, что значение германия всегда будет велико.

ЕЩЕ ОДИН ТОЧНЫЙ ПРОГНОЗ. О прозорливости Д. И. Менделеева, описавшего свойства трех еще не открытых элементов, написано много. Не желая повторяться, хотим лишь обратить внимание на точность менделеевского прогноза. Сопоставьте сведенные в таблицу данные Менделеева и Винклера.

Экасилиций Атомный вес 72 Удельный вес 5,5 Атомный объем 13 Высший окисел EsO 2 Удельный вес его 4,7

Хлористое соединение EsCl 4 - жидкость с температурой кипения около 90°С

Соединение с водородом EsH 4 газообразно

Металлоорганическое соединение Es(C2H 5) 4 с температурой кипения 160°С

Германий Атомный вес 72,6 Удельный вес 5,469 Атомный объем 13,57 Высший окисел GeO 2 Удельный вес его 4,703

Хлористое соединение GeCl 4 - жидкость с температурой кипения 83°С

Соединение с водородом GeH 4 газообразно

Металлоорганическое соединение Ge(C2H 5) 4 с температурой кипения 163,5°С

ПИСЬМО КЛЕМЕНСА ВИНКЛЕРА

«Милостивый государь!

Разрешите мне при сем передать Вам оттиск сообщения, из которого следует, что мной обнаружен новый элемент «германий». Сначала я был того мнения, что этот элемент заполняет пробел между сурьмой и висмутом в Вашей замечательно проникновенно построенной периодической системе и что этот элемент совпадает с Вашей экасурьмой, но все указывает на то, что здесь мы имеем дело с экасилицием.

Я надеюсь вскоре сообщить Вам более подробно об этом интересном веществе; сегодня я ограничиваюсь лишь тем, что уведомляю Вас о весьма вероятном триумфе Вашего гениального исследования и свидетельствую Вам свое почтение и глубокое уважение.

МЕНДЕЛЕЕВ ОТВЕТИЛ: «Так как открытие германия является венцом периодической системы, то Вам, как «отцу» германия, принадлежит этот венец; для меня же является ценной моя роль предшественника и то дружеское отношение, которое я встретил у Вас».

ГЕРМАНИЙ И ОРГАНИКА. Первое элементоорганическое соединение элемента № 32, тетраэтилгерманий, получено Винклером из четыреххлористого германия. Интересно, что ни одно из полученных до сих пор элементоорганических соединений германия не ядовито, в то время как большинство свинец - и оловоорганических соединений (эти элементы - аналоги германия) токсичны.

КАК ВЫРАЩИВАЮТ ГЕРМАНИЕВЫЙ МОНОКРИСТАЛЛ. На поверхность расплавленного германия помещают германиевый же кристалл - «затравку», которую постепенно поднимают автоматическим устройством; температура расплава чуть выше температуры плавления германия (937°С). Затравку вращают, чтобы монокристалл «обрастал мясом» равномерно со всех сторон. Важно, что в процессе такого роста происходит то же самое, что при зонной плавке: в «нарост» (твердую фазу) переходит почти исключительно германий, а большая часть примесей остается в расплаве.

ГЕРМАНИЙ И СВЕРХПРОВОДИМОСТЬ. Классический полупроводник германий оказался причастен к решению другой важной проблемы - созданию сверхпроводящих материалов, работающих при температуре жидкого водорода , а не жидкого гелия . Водород, как известно, переходит из газообразного в жидкое состояние при температуре - 252,6°С, или 20,5° К. В начале 70-х годов была получена пленка из сплава германия с ниобием толщиной всего в несколько тысяч атомов. Эта пленка сохраняет сверхпроводимость при температуре 24,3° К и ниже.

В 1870 году Д.И. Менделеев на основании периодического закона предсказал еще неоткрытый элемент IV группы, назвав его экасилицием, и описал его основные свойства. В 1886 году немецкий химик Клеменс Винклер, при химическом анализе минерала аргиродита обнаружил этот химический элемент. Первоначально Винклер хотел назвать новый элемент «нептунием», но это название уже было дано одному из предполагаемых элементов, поэтому элемент получил название в честь родины учёного - Германии.

Нахождение в природе, получение:

Германий встречается в сульфидных рудах, железной руде, обнаруживается почти во всех силикатах. Основные минералы содержащие германий: аргиродит Ag 8 GeS 6 , конфильдит Ag 8 (Sn,Ce)S 6 , стоттит FeGe(OH) 6 , германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO 2 , который восстанавливают водородом при 600°C до простого вещества.
GeO 2 + 2H 2 =Ge + 2H 2 O
Очистку германия проводят методом зонной плавки, что делает его одним из самых химически чистых материалов.

Физические свойства:

Твёрдое вещество серо-белого цвета, с металлическим блеском(tпл 938°C, tкип 2830°С)

Химические свойства:

При нормальных условиях германий устойчив к действию воздуха и воды, щелочей и кислот, растворяется в царской водке и в щелочном растворе перекиси водорода. Степени окисления германия в его соединениях: 2, 4.

Важнейшие соединения:

Оксид германия(II) , GeO, серо-чёрн., слабо раств. в-во, при нагревании диспропорционирует: 2GeO = Ge + GeO 2
Гидроксид германия(II) Ge(OH) 2 , крас.-оранж. крист.,
Йодид германия(II) , GeI 2 , желт. кр., раств. в воде, гидрол. по кат.
Гидрид германия(II) , GeH 2 , тв. бел. пор., легко окисл. и разлаг.

Оксид германия(IV) , GeO 2 , бел. крист., амфотерн., получают гидролизом хлорида, сульфида, гидрида германия, или реакцией германия с азотной кислотой.
Гидроксид германия(IV), (германиевая кислота) , H 2 GeO 3 , слаб. неуст. двухосн. к-та, соли германаты, напр. германат натрия , Na 2 GeO 3 , бел. крист., раств. в воде; гигроскопичен. Существуют также гексагидроксогерманаты Na 2 (орто-германаты), и полигерманаты
Сульфат германия(IV) , Ge(SO 4) 2 , бесцв. кр., гидролизуются водой до GeO 2 , получают нагреванием при 160°C хлорида германия(IV) с серным ангидридом: GeCl 4 + 4SO 3 = Ge(SO 4) 2 + 2SO 2 + 2Cl 2
Галогениды германия(IV), фторид GeF 4 - бесц. газ, необр. гидрол., реагирует с HF, образуя H 2 – германофтористоводородную кислоту: GeF 4 + 2HF = H 2 ,
хлорид GeCl 4 , бесцв. жидк., гидр., бромид GeBr 4 , сер. кр. или бесцв. жидк., раств. в орг. соед.,
йодид GeI 4 , желт.-оранж. кр., медл. гидр., раств. в орг. соед.
Сульфид германия(IV) , GeS 2 , бел. кр., плохо раств. в воде, гидрол., реагирует со щелочами:
3GeS 2 + 6NaOH = Na 2 GeO 3 + 2Na 2 GeS 3 + 3H 2 O, образуя германаты и тиогерманаты.
Гидрид германия(IV), "герман" , GeH 4 , бесцв. газ, органические производные тетраметилгерман Ge(CH 3) 4 , тетраэтилгерман Ge(C 2 H 5) 4 - бесцв. жидкости.

Применение:

Важнейший полупроводниковый материал, основные направления применения: оптика, радиоэлектроника, ядерная физика.

Соединения германия мало токсичны. Германий – микроэлемент, который в организме человека повышает эффективность иммунной системы организма, борется с онкозаболеваниями, уменьшает болевые ощущения. Отмечается также, что германий способствует переносу кислорода к тканям организма и является мощным антиоксидантом – блокатором свободных радикалов в организме.
Суточная потребность организма человека – 0,4–1,5 мг.
Чемпионом по содержанию германия среди пищевых продуктов является чеснок (750 мкг германия на 1 г сухой массы зубков чеснока).

Материал подготовлен студентами ИФиХ ТюмГУ
Демченко Ю.В., Борноволоковой А.А.
Источники:
Германий//Википедия./ URL: http://ru.wikipedia.org/?oldid=63504262 (дата обращения: 13.06.2014).
Германий//Allmetals.ru/URL: http://www.allmetals.ru/metals/germanium/ (дата обращения: 13.06.2014).