Рефераты Изложения История

Как обозначать числа с пи на числовой окружности? Урок "определение синуса и косинуса на единичной окружности" Краткое изложение и основные формулы.

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.

При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

Расположение точек на числовой окружности

Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

Числа не кратные π на числовой окружности

Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Обозначаем числа \(2π\), \(π\), \(\frac{π}{2}\), \(-\frac{π}{2}\), \(\frac{3π}{2}\)

Как вы знаете из прошлой статьи, радиус числовой окружности равен \(1\). Значит, длина окружности равняется \(2π\) (вычислили по формуле \(l=2πR\)). С учетом этого отметим \(2π\) на числовой окружности. Чтобы отметить это число нужно пройти от \(0\) по числовой окружности расстояние равно \(2π\) в положительном направлении, а так как длина окружности \(2π\), то получается, что мы сделаем полный оборот. То есть, числу \(2π\) и \(0\) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки - это нормально для числовой окружности.

Теперь обозначим на числовой окружности число \(π\). \(π\) – это половина от \(2π\). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от \(0\) в положительном направлении половину окружности.


Отметим точку \(\frac{π}{2}\) . \(\frac{π}{2}\) – это половина от \(π\), следовательно чтобы отметить это число, нужно от \(0\) пройти в положительном направлении расстояние равное половине \(π\), то есть четверть окружности.


Обозначим на окружности точки \(-\)\(\frac{π}{2}\) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.


Нанесем \(-π\). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.


Теперь рассмотрим пример посложнее. Отметим на окружности число \(\frac{3π}{2}\) . Для этого дробь \(\frac{3}{2}\) переведем в \(\frac{3}{2}\) \(=1\)\(\frac{1}{2}\) , т.е. \(\frac{3π}{2}\) \(=π+\)\(\frac{π}{2}\) . Значит, нужно от \(0\) в положительную сторону пройти расстояние в пол окружности и еще в четверть.



Задание 1 . Отметьте на числовой окружности точки \(-2π\),\(-\)\(\frac{3π}{2}\) .

Обозначаем числа \(\frac{π}{4}\), \(\frac{π}{3}\), \(\frac{π}{6}\)

Выше мы нашли значения в точках пересечения числовой окружности с осями \(x\) и \(y\). Теперь определим положение промежуточных точек. Для начала нанесем точки \(\frac{π}{4}\) , \(\frac{π}{3}\) и \(\frac{π}{6}\) .
\(\frac{π}{4}\) – это половина от \(\frac{π}{2}\) (то есть, \(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(:2)\) , поэтому расстояние \(\frac{π}{4}\) – это половина четверти окружности.


\(\frac{π}{4}\) – это треть от \(π\) (иначе говоря,\(\frac{π}{3}\) \(=π:3\)), поэтому расстояние \(\frac{π}{3}\) – это треть от полукруга.

\(\frac{π}{6}\) – это половина \(\frac{π}{3}\) (ведь \(\frac{π}{6}\) \(=\)\(\frac{π}{3}\) \(:2\)) поэтому расстояние \(\frac{π}{6}\) – это половина от расстояния \(\frac{π}{3}\) .


Вот так они расположены друг относительно друга:

Замечание: Расположение точек со значением \(0\), \(\frac{π}{2}\) ,\(π\), \(\frac{3π}{2}\) , \(\frac{π}{4}\) , \(\frac{π}{3}\) , \(\frac{π}{6}\) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.


Разные расстояние на окружности наглядно:



Обозначаем числа \(\frac{7π}{6}\), \(-\frac{4π}{3}\), \(\frac{7π}{4}\)

Обозначим на окружности точку \(\frac{7π}{6}\) , для этого выполним следующие преобразования: \(\frac{7π}{6}\) \(=\)\(\frac{6π + π}{6}\) \(=\)\(\frac{6π}{6}\) \(+\)\(\frac{π}{6}\) \(=π+\)\(\frac{π}{6}\) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние \(π\), а потом еще \(\frac{π}{6}\) .


Отметим на окружности точку \(-\)\(\frac{4π}{3}\) . Преобразовываем: \(-\)\(\frac{4π}{3}\) \(=-\)\(\frac{3π}{3}\) \(-\)\(\frac{π}{3}\) \(=-π-\)\(\frac{π}{3}\) . Значит надо от \(0\) пройти в отрицательную сторону расстояние \(π\) и еще \(\frac{π}{3}\) .


Нанесем точку \(\frac{7π}{4}\) , для этого преобразуем \(\frac{7π}{4}\) \(=\)\(\frac{8π-π}{4}\) \(=\)\(\frac{8π}{4}\) \(-\)\(\frac{π}{4}\) \(=2π-\)\(\frac{π}{4}\) . Значит, чтобы поставить точку со значением \(\frac{7π}{4}\) , надо от точки со значением \(2π\) пройти в отрицательную сторону расстояние \(\frac{π}{4}\) .


Задание 2 . Отметьте на числовой окружности точки \(-\)\(\frac{π}{6}\) ,\(-\)\(\frac{π}{4}\) ,\(-\)\(\frac{π}{3}\) ,\(\frac{5π}{4}\) ,\(-\)\(\frac{7π}{6}\) ,\(\frac{11π}{6}\) , \(\frac{2π}{3}\) ,\(-\)\(\frac{3π}{4}\) .

Обозначаем числа \(10π\), \(-3π\), \(\frac{7π}{2}\) ,\(\frac{16π}{3}\), \(-\frac{21π}{2}\), \(-\frac{29π}{6}\)

Запишем \(10π\) в виде \(5 \cdot 2π\). Вспоминаем, что \(2π\) – это расстояние равное длине окружности, поэтому чтобы отметить точку \(10π\), нужно от нуля пройти расстояние равное \(5\) окружностям. Нетрудно догадаться, что мы окажемся снова в точке \(0\), просто сделаем пять оборотов.


Из этого примера можно сделать вывод:

Числам с разницей в \(2πn\), где \(n∈Z\) (то есть \(n\) - любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше \(2π\) (или меньше \(-2π\)), надо выделить из него целое четное количество \(π\) (\(2π\), \(8π\), \(-10π\)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Еще один вывод:

Точке, которой соответствует \(0\), также соответствуют все четные количества \(π\) (\(±2π\),\(±4π\),\(±6π\)…).

Теперь нанесем на окружность \(-3π\). \(-3π=-π-2π\), значит \(-3π\) и \(–π\) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в \(-2π\)).


Кстати, там же будут находиться все нечетные \(π\).

Точке, которой соответствует \(π\), также соответствуют все нечетные количества \(π\) (\(±π\),\(±3π\),\(±5π\)…).

Сейчас обозначим число \(\frac{7π}{2}\) . Как обычно, преобразовываем: \(\frac{7π}{2}\) \(=\)\(\frac{6π}{2}\) \(+\)\(\frac{π}{2}\) \(=3π+\)\(\frac{π}{2}\) \(=2π+π+\)\(\frac{π}{2}\) . Два пи – отбрасываем, и получается что, для обозначения числа \(\frac{7π}{2}\) нужно от нуля в положительную сторону пройти расстояние равное \(π+\)\(\frac{π}{2}\) (т.е. половину окружности и еще четверть).

Учащиеся старших классов никогда не знают, в какой момент у них могут возникнуть проблемы с учебой. Трудности способен доставить любой предмет, изучаемый в школе, начиная от русского языка и заканчивая ОБЖ. Одной из учебных дисциплин, регулярно заставляющих школьников попотеть, является алгебра. Алгебраическая наука начинает терроризировать умы ребят ещё с седьмого класса и продолжает это дело на десятом и одиннадцатом годах обучения. Облегчить себе жизнь подростки могут с помощью разнообразных средств, в число которых неизменно входят решебники.

Сборник ГДЗ для 10-11 классов по алгебре (Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачёва) – это прекрасное дополнение к основной книге. Посредством приведенной в нем справочной информации ученик готов решить любое упражнение. Задания предполагают разбор следующих тем:

  • тригонометрические функции и уравнения;
  • логарифмы;
  • степени.

Представленные ответы и комментарии имеют необходимые авторские пометки, которые обязательно помогут ребенку.

Для чего нужен решебник

Издание даёт возможность всем школьникам самостоятельно проработать материал, а в случае непонимания или пропуска какой-нибудь темы – самому пройти ее без ущерба качеству. Также справочные данные позволяют эффективно подготовиться к грядущим самостоятельным и контрольным работам. Наиболее любознательные учащиеся могут идти по учебной программе вперёд, что в дальнейшем положительно скажется на усвоении знаний и увеличению среднего балла оценки.

Помимо десяти- и одиннадцатиклассников пособием Алимова по алгебре для 10-11 классов вполне могут пользоваться родители и учителя: для первых оно станет инструментом контроля знаний ребенка, а для вторых – основой для разработки своих материалов и тестовых заданий для классных занятий.

Как устроен сборник

Ресурс полностью повторяет структуру учебника. Внутри пользователь имеет возможность просмотреть ответы к 1624 упражнениям, а также к заданиям раздела «Проверь себя», разделенным на тринадцать глав. Ключи доступны круглосуточно, номер можно найти через поисковое поле или посредством удобной навигации.

5. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЛЮБОГО АРГУМЕНТА

§ 20. ЕДИНИЧНАЯ ОКРУЖНОСТЬ

948. Какое существует соотношение между длиной дуги единичной окружности и ее радианной мерой?

949. На единичной окружности построить точки, соответствующие числам: 0; 1; 2; 3; 4; 5; .... Могут ли какие-либо из этих точек совпасть? Почему?

950. Числа заданы формулой α = 1 / 2 k , где k = 0; ±1; ±2; ....
Построить на числовой оси и на единичной окружности точки, соответствующие этим числам. Сколько таких точек будет на числовой оси и сколько на единичной окружности?

951. Отметить на единичной окружности и на числовой оси точки, соответствующие числам:
1) α = πk , k = 0; ±1, ±2, ...;
2) α = π / 2 (2k + 1), k = 0; ± 1; ±2; ...;
3) α = πk / 6 , k = 0; ±1; ±2; ... .
Сколько таких точек на числовой оси и сколько на единичной окружности?

952. Как расположатся на числовой оси и на единичной окружности точки, соответствующие числам:
1) а и - а ; 2) а и а ± π; 3) а + π и а - π; 4) а и а + 2πk , k = 0; ±1; ±2; ...?

953. В чем состоит принципиальное различие между изображением чисел точками числовой оси и их изображением точками единичной окружности?

954. 1) Найти наименьшие неотрицательные числа, соответствующие точкам пересечения единичной окружности: а) с осями координат; б) с биссектрисами координатных углов.

2) В каждом случае написать общую формулу чисел, соответствующих указанным точкам единичной окружности.

955. Зная, что а есть одно из чисел, соответствующих данной точке единичной окружности, найти:
1) все числа, соответствующие данной точке;
2) все числа, соответствующие точке единичной окружности, симметричной данной:
а) относительно оси абсцисс; б) относительно оси ординат; в) относительно начала координат.
Решить задачу, принимая а = 0; π / 2 ; 1 ; 2 ; π / 6 ; - π / 4 .

956. Найти условие, которому удовлетворяют числа а , соответствующие:
1) точкам 1-й четверти единичной окружности;
2) точкам 2-й четверти единичной окружности;
3) точкам 3-й четверти единичной окружности;
4) точкам 4-й четверти единичной окружности.

957. Вершина А правильного восьмиугольника ABCDEFKL, вписанного в единичную окружность, имеет координаты (1; 0) (рис. 39).

1) Определить координаты остальных вершин восьмиугольника.
2) Составить общую формулу дуг единичной окружности, оканчивающихся:
а) в точках А, С, Е и K; б) в точках В, D, F и L; в) в точках А, В, С, D, E, F, K и L.

958. 1) На единичной окружности построить точку, ордината у которой равна 0,5. Сколько точек единичной окружности имеют данную ординату? Как расположены эти точки относительно оси ординат.

2) Измерить транспортиром (с точностью до 1°) наименьшую по абсолютной величине дугу, конец которой имеет ординату, равную 0,5, и составить общую формулу дуг единичной окружности, оканчивающихся в точках с ординатой 0,5.

959. Решить задачу 958, принимая ординату у равной:

1) - 0,5; 2) 0 4; 3) 0,5√3 .

960. 1) На единичной окружности построить точку, абсцисса которой равна 0,5. Сколько точек единичной окружности имеют данную абсциссу? Как расположены эти точки относительно оси абсцисс?

2) Измерить транспортиром (с точностью до 1°) наименьшую положительную дугу, конец которой имеет абсциссу, равную 0,5, и составить общую формулу дуг единичной окружности, оканчивающихся в точках с абсциссой 0,5.

961. Решить задачу 960, принимая абсциссу х равной:

1) - 2 / 3 ; 2) 0,4; 3) 0,5√2 .

962. Определить координаты концов дуг единичной окружности, заданных формулой (k = 0; ±1; ±2; ...):

1) α = 30°(2k + 1); 2) α = πk / 3 .

963. Выразить одной формулой следующие серии углов (k = 0; ±1; ±2; ...):

1) α 1 = 180° k + 120° и α 2 = 180° k + 30°;

2) α 1 = πk + π / 6 и α 2 = πk - π / 3 ;

3) α 1 = 90° k и α 2 = 45° (2k + 1);

4) α 1 = πk и α 2 = π / 3 (3k ± 1);

5) α 1 = 120° k ± 15° и α 2 = 120° k ± 45°;

6) α 1 = πk ; α 2 = 2πk ± π / 3 и α 3 = 2лk ± 2π / 3 ;

7) α 1 = 180° k + 140°; α 2 = 180° k + 80° и α 3 = 180° k + 20°;

8) α 1 = 180° k + (-1) k 60° и α 2 = 180° k - (-1) k 60°.

964. Исключить повторяющиеся углы в следующих формулах (k = 0-±1; ±2; ...):

1) α 1 = 90° k и α 2 = 60° k + 30°;

2) α 1 = πk / 2 и α 2 = πk / 5 ;

3) α 1 = 1 / 4 πk и α 2 = 1 / 2 πk ± 1 / 4 π;

4) α 1 = π (2k + 1) - π / 6 и α 2 = 2 / 5 πk + 1 / 30 π;

5) α 1 = 72° k + 36° и α 2 = 120° k + 60°.