Рефераты Изложения История

Степень числа с действительным показателем. Свойства степеней, формулировки, доказательства, примеры


Для любого угла α такого, что α ≠ πk/2 (k принадлежит множеству Z), справедливо:

Для любого угла α справедливы равенства:

Для любого угла α такого, что α ≠ πk (k принадлежит множеству Z), справедливо:

Формулы приведения

В таблице даны формулы приведения для тригонометрических функций.

Функция (угол в º) 90º - α 90º + α 180º - α 180º + α 270º - α 270º + α 360º - α 360º + α
sin cos α cos α sin α -sin α -cos α -cos α -sin α sin α
cos sin α -sin α -cos α -cos α -sin α sin α cos α cos α
tg ctg α -ctg α -tg α tg α ctg α -ctg α -tg α tg α
ctg tg α -tg α -ctg α ctg α tg α -tg α -ctg α ctg α
Функция (угол в рад.) π/2 – α π/2 + α π – α π + α 3π/2 – α 3π/2 + α 2π – α 2π + α
Четность тригонометрических функций. Углы φ и -φ образуются при повороте луча в двух взаимно противоположных направлениях (по часовой стрелке и против часовой стрелки).
Поэтому конечные стороны OA 1 и ОА 2 этих углов симметричны относительно оси абсцисс. Координаты векторов единичной длины OA 1 = (х 1 , у 1) и ОА 2 = (х 2 , y 2) удовлетворяют соотношениям: х 2 = х 1 y 2 = -у 1 Поэтому cos(-φ) = cosφ, sin (- φ) = -sin φ, Следовательно, синус является нечетной, а косинус- четной функцией угла.
Далее имеем:
Поэтому тангенс и котангенс являются нечетными функциями угла.

8)Обра́тныетригонометри́ческиефу́нкции - математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

§ аркси́нус (обозначение: arcsin)

§ аркко́синус (обозначение: arccos)

§ аркта́нгенс (обозначение: arctg; в иностранной литературе arctan)

§ арккота́нгенс (обозначение: arcctg; в иностранной литературе arccotan)

§ арксе́канс (обозначение: arcsec)

§ арккосе́канс (обозначение: arccosec; в иностранной литературе arccsc)

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arc - дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Изредка в иностранной литературе пользуются обозначениями типа sin −1 для арксинуса и т.п.; это считается неоправданным, так как возможна путаница с возведением функции в степень −1.

Свойства функции arcsin

(функция является нечётной). при .

при

при

Свойства функции arccos[

· (функция центрально-симметрична относительно точки ), является индифферентной.

·

·

·

Свойства функции arctg

·

· , при x > 0.

Свойства функции arcctg

· (график функции центрально-симметричен относительно точки

· при любых

·

12)Степенью числа a > 0 с рациональным показателем является степень, показатель которой представим в виде обыкновенной несократимой дроби x = m/n, где m целое, а n натуральное число, причём n > 1 (x - показатель степени).

Степень с действительным показателем

Пусть дано положительное число и произвольное действительное число . Число называется степенью, число - основанием степени, число - показателем степени.

По определению полагают:

Если и - положительные числа, и - любые действительные числа, то справедливы следующие свойства:

14)Логари́фм числа по основанию (от греч. λόγος - «слово», «отношение» и ἀριθμός - «число» ) определяется какпоказатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: "логарифм по основанию ".

Свойства логарифмов:

1° - основное логарифмическое тождество.

Логарифм единицы по любому положительному, отличному от 1, основанию равен нулю. Это возможно потому, что из любого действительного числа можно получить 1 только возведя его в нулевую степень.

4° - логарифм произведения.

Логарифм произведения равен сумме логарифмов сомножителей.

- логарифм частного.

Логарифм частного (дроби) равен разности логарифмов сомножителей.

6° - логарифм степени.

Логарифм степени равен произведению показателя степени на логарифм ее основания.

- переход к новому основанию.

15)Действительное число - (вещественное число) , любое положительное, отрицательное число или нуль. Посредством действительных чисел выражаются результаты измерения всех физических величин. ;

16)Мнимая единица - обычно комплексное число, квадрат которого равен отрицательной единице. Однако возможны и иные варианты: в конструкции удвоения по Кэли-Диксону или в рамках алгебры по Клиффорду.

Ко́мпле́ксные чи́сла (устар. мнимые числа ) - числа вида , где и - вещественные числа, - мнимая единица; то есть . Множество всех комплексных чисел обычно обозначается от лат. complex - тесно связанный.


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

С. Шестаков,
Москва

Письменный экзамен

11 класс
1. Вычисления. Преобразование выражений

§ 3. Степень с действительным показателем

Упражнения § 5 первой главы сборника в основном связаны с показательной функцией и ее свойствами. В этом параграфе, как и в предыдущих, проверяется не только умение выполнять преобразования на основе известных свойств, но и овладение учащимися функциональной символикой. Среди заданий сборника можно выделить следующие группы:

  • упражнения, проверяющие усвоение определения показательной функции (1.5.A06, 1.5.B01–B04) и умение пользоваться функциональной символикой (1.5A02, 1.5.B05, 1.5C11);
  • упражнения на преобразование выражений, содержащих степень с действительным показателем, и на вычисление значений таких выражений и значений показательной функции (1.5B07, 1.5B09, 1.5.C02, 1.5.C04, 1.5.C05, 1.5D03, 1.5D05, 1.5.D10 и др.);
  • упражнения на сравнение значений выражений, содержащих степень с действительным показателем, требующие применения свойств степени с действительным показателем и показательной функции (1.5.B11, 1.5C01, 1.5C12, 1.5D01, 1.5D11);
  • прочие упражнения (в том числе связанные с позиционной записью числа, прогрессиями и др.) - 1.5.A03, 1.5.B08, 1.5.C06, 1.5. C09, 1.5.C10, 1.5.D07, 1.5.D09.

Рассмотрим ряд задач, связанных с функциональной символикой.

1.5.A02. д) Даны функции

Найдите значение выражения f 2 (x) – g 2 (x).

Решение. Воспользуемся формулой разности квадратов:

Ответ: –12.

1.5.C11. б) Даны функции

Найдите значение выражения f(x) f(y) – g(x) g(y), если f(x – y) = 9.

Приведем краткие решения упражнений на преобразование выражений, содержащих степень с действительным показателем, и на вычисление значений таких выражений и значений показательной функции.

1.5.B07. а) Известно, что 6 a – 6 –a = 6. Найдите значение выражения (6 a – 6) · 6 a .

Решение. Из условия задачи следует, что 6 a – 6 = 6 –a . Тогда

(6 a – 6) · 6a = 6 –a · 6 a = 1.

1.5.C05. б) Найдите значение выражения 7 a–b , если

Решение. По условию Разделим числитель и знаменатель левой части данного равенства на 7 b . Получим

Сделаем замену. Пусть y = 7 a–b . Равенство принимает вид

Решим полученное уравнение

Следующая группа упражнений - задачи на сравнение значений выражений, содержащих степень с действительным показателем, требующие применения свойств степени с действительным показателем и показательной функции.

1.5.B11. б) Расположите числа f(60), g(45) и h(30) в порядке убывания, если f(x) = 5 x , g(x) = 7 x и h(x) = 3 x .

Решение. f(60) = 5 60 , g(45) = 7 45 и h(30) = 3 30 .

Преобразуем данные степени так, чтобы получить одинаковые показатели:

5 60 =625 15 , 7 45 =343 15 , 3 30 =9 15 .

Запишем основания в порядке убывания: 625 > 343 > 9.

Следовательно, искомый порядок: f(60), g(45), h(30).

Ответ: f(60), g(45), h(30).

1.5.C12. а) Сравните , где x и y - некоторые действительные числа.

Решение.

Поэтому

Поэтому

Поскольку 3 2 > 2 3 , получаем, что

Ответ:

1.5.D11. а) Сравните числа

Поскольку получим

Ответ:

В завершение обзора задач на степень с действительным показателем рассмотрим упражнения, связанные с позиционной записью числа, прогрессиями и др.

1.5.A03. б) Дана функция f(x) = (0,1) x . Найдите значение выражения 6f(3) + 9f(2) + 4f(1) + 4f(0).

4f(0) + 4f(1) + 9f(2) + 6f(3) = 4 · 1 + 4 · 0,1 + 9 · 0,01 + 6 · 0,001 = 4,496.

Таким образом, данное выражение является разложением в сумму разрядных единиц десятичной дроби 4,496.

Ответ: 4,496.

1.5.D07. а) Дана функция f(x) = 0,1 x . Найдите значение выражения f 3 (1) – f 3 (2) + f 3 (3) + ... + (–1) n–1 f 3 (n) + ...

f 3 (1)–f 3 (2)+f 3 (3)+...+(–1) n–1 f 3 (n)+...= 0,1 3 –0,1 6 +0,1 9 +...+(–1) n–1 · 0,1 3n + ...

Данное выражение является суммой бесконечно убывающей геометрической прогрессии с первым членом 0,001 и знаменателем –0,001. Сумма равна

1.5.D09. а) Найдите значение выражения 5 2x +5 2y +2 5x · 5 y – 25 y · 5 x , если 5 x –5 y =3, x + y = 3.

5 2x +5 2y +25 x · 5 y –25 y · 5 x =(5 x – 5 y) 2 +2 · 5 x · 5 y +5 x · 5 y (5 x – 5 y)=3 2 +2 · 5 x+y +5 x+y · 3=3 2 +2 · 5 3 +3 · 5 3 =634.

Ответ: 634.

§ 4. Логарифмические выражения

При повторении темы «Преобразование логарифмических выражений» (§ 1.6 сборника) следует вспомнить ряд основных формул, связанных с логарифмами:

Приведем ряд формул, знание которых не требуется для решения задач уровней A и B, но может оказаться полезным при решении более сложных задач (число этих формул можно как уменьшать, так и увеличивать в зависимости от взглядов учителя и уровня подготовленности учащихся):

Большинство упражнений из § 1.6 сборника можно отнести к одной из следующих групп:

  • упражнения на непосредственное использование определения и свойств логарифмов (1.6.A03, 1.6.A04, 1.6.B01, 1.6.B05, 1.6.B08, 1.6.B10, 1.6.C09, 1.6.D01, 1.6.D08, 1.6.D10);
  • упражнения на вычисление значения логарифмического выражения по данному значению другого выражения или логарифма (1.6.C02, 1.6.C09, 1.6.D02);
  • упражнения на сравнение значений двух выражений, содержащих логарифмы (1.6.C11);
  • упражнения с комплексным многошаговым заданием (1.6.D11, 1.6.D12).

Приведем краткие решения упражнений на непосредственное использование определения и свойств логарифмов.

1.6.B05. а) Найдите значение выражения

Решение.

Выражение принимает вид

1.6.D08. б) Найдите значение выражения (1 – log 4 36)(1 – log 9 36).

Решение. Воспользуемся свойствами логарифмов:

(1 – log 4 36)(1 – log 9 36) =

= (1 – log 4 4 – log 4 9)(1 – log 9 4 – log 9 9) =

= –log 4 9 · (–log 9 4) = 1.

1.6.D10. а) Найдите значение выражения

Решение. Преобразуем числитель:

log 6 42 · log 7 42=(1 + log 6 7)(1 + log 7 6)=1 + log 6 7 + log 7 6 + log 6 7 · log 7 6.

Но log 6 7 · log 7 6 = 1. Следовательно, числитель равен 2 + log 6 7 + log 7 6, а дробь равна 1.

Перейдем к решению упражнений на вычисление значения логарифмического выражения по данному значению другого выражения или логарифма.

1.6.D02. а) Найдите значение выражения log 70 320, если log 5 7=a , log 7 2=b .

Решение. Преобразуем выражение. Перейдем к основанию 7:

Из условия следует, что . Поэтому

В следующей задаче требуется сравнить значения двух выражений, содержащих логарифмы.

1.6.C11. а) Сравните числа

Решение. Приведем оба логарифма к основанию 2.

Следовательно, данные числа равны.

Ответ: данные числа равны.

Тема урока: Степень с действительным показателем.

Задачи:

  • Образовательные :
    • обобщить понятие степени;
    • отработать умение находить значение степени с действительным показателем;
    • закрепить умения использовать свойства степени при упрощении выражений;
    • выработать навык использования свойств степени при вычислениях.
  • Развивающие :
    • интеллектуальное, эмоциональное, личностное развитие ученика;
    • развивать умение обобщать, систематизировать на основе сравнения, делать вывод;
    • активизировать самостоятельную деятельность;
    • развивать познавательный интерес.
  • Воспитательные :
    • воспитание коммуникативной и информационной культуры обучающихся;
    • эстетическое воспитание осуществляется через формирование умения рационально, аккуратно оформлять задание на доске и в тетради.

Учащиеся должны знать: определение и свойства степени с действительным показателем.

Учащиеся должны уметь:

  • определять имеет ли смысл выражение со степенью;
  • использовать свойства степени при вычислениях и упрощении выражений;
  • решать примеры, содержащие степень;
  • сравнивать, находить сходства и отличия.

Форма урока: семинар – практикум, с элементами исследования. Компьютерная поддержка.

Форма организации обучения: индивидуальная, групповая.

Тип урока: урок исследовательской и практической работы.

ХОД УРОКА

Организационный момент

«Однажды царь решил выбрать из своих придворных первого помощника. Он подвёл всех к огромному замку. «Кто первым откроет, тот и будет первым помощником». Никто даже не притронулся к замку. Лишь один визирь подошёл и толкнул замок, который открылся. Он не был закрыт на ключ.
Тогда царь сказал: «Ты получишь эту должность, потому что полагаешься не только на то, что видишь и слышишь, а надеешься на собственные силы и не боишься сделать попытку».
И мы сегодня будем пытаться, пробовать, чтобы прийти к правильному решению.

1. С каким математическим понятием связаны слова:

Основание
Показатель (Степень)
Какими словами можно объединить слова:
Рациональное число
Целое число
Натуральное число
Иррациональное число (Действительное число)
Сформулируйте тему урока. (Степень с действительным показателем)

2. Какая наша стратегическая цель? (ЕГЭ)
Какие цели нашего урока ?
– Обобщить понятие степени.

Задачи:

– повторить свойства степени
– рассмотреть применение свойств степени при вычислениях и упрощениях выражений
– отработка вычислительных навыков.

3. Итак, а р, где р – число действительное.
Приведите примеры (выберете из выражений 5 –2 , 43, ) степени

– с натуральным показателем
– с целым показателем
– с рациональным показателем
– с иррациональным показателем

4. При каких значениях а имеет смысл выражение

аn, где n (а – любое)
аm, где m (а 0) Как от степени с отрицательным показателем перейти к степени с положительным показателем?
, где (а0)

5. Из данных выражений выберете те, которые смысла не имеют:
(–3) 2 , , , 0 –3 , , (–3) –1 , .
6. Вычислите. Ответы в каждом столбике обладают одним общим свойством. Укажите лишний ответ (этим свойством не обладающий)

2 = =
= 6 = (неправ. др.) = (нельзя записать дес. др.)
= (дробь) = =

7. Какие действия (математические операции) можно выполнять со степенями?

Установите соответствие:

Один ученик записывает формулы (свойства) в общем виде.

8. Дополнить степени из п.3 так, чтобы к полученному примеру можно было применить свойства степени.

(Один человек работает у доски, остальные в тетрадях. Для проверки обменяться тетрадями, а ещё один выполняет действия на доске)

9. На доске (работает ученик):

Вычислите : =

Самостоятельно (с проверкой на листах)

Какой из ответов не может получиться в части «В» на ЕГЭ? Если в ответе получилось , то как записать такой ответ в части «В»?

10. Самостоятельное выполнение задания (с проверкой у доски – несколько человек)

Задание с выбором ответа

1
2 :
3 0,3
4

11. Задание с кратким ответом (решение у доски):

+ + (60)5 2 – 3–4 27 =

Самостоятельно с проверкой на скрытой доске:

– – 322– 4 + (30)4 4 =

12 . Сократите дробь (на доске):

В это время один человек решает на доске самостоятельно: = (класс проверяет)

13. Самостоятельное решение (на проверку)

На отметку «3»: Тест с выбором ответа:

1. Укажите выражение, равное степени

1. 2. 3. 4.

2. Представьте в виде степени произведение: – Спасибо за урок!

Данный урок входит в тему "Преобразования выражений, содержащих степени и корни".

Конспект представляет собой подробную разработку урока по свойствам степени с рациональным и действительным показателем. Используются компьютерные, групповые и игровые технологии обучения.

Скачать:


Предварительный просмотр:

Методическая разработка урока по алгебре

преподавателя математики ГАУ КО ПО КСТ

Пеховой Надежды Юрьевны

по теме: «Свойства степени с рациональным и действительным показателем».

Цели урока:

  • обучающие: закрепление и углубление знаний свойств степени с рациональным показателем и применение их в упражнениях; совершенствование знаний по истории развития степеней;
  • развивающие: развитие навыка само- и взаимоконтроля; развитие интеллектуальных способностей, мыслительных умений,
  • воспитывающие: воспитание познавательного интереса к предмету, воспитание ответственности за выполняемую работу, способствовать созданию атмосферы активного творческого труда.

Тип урока: Уроки совершенствования знаний, умений и навыков.

Методы проведения: словесно – наглядные.

Педагогические технологии: компьютерные, групповые и игровые технологии обучения.

Оснащение урока: проекционная техника, компьютер, презентация к уроку, рабочие

тетради, учебники, карточки с текстом кроссворда и рефлексивного теста.

Время занятия: 1час 20мин.

Основные этапы урока :

1. Организационный момент. Сообщение темы, целей урока.

2. Актуализация опорных знаний. Повторение свойств степени с рациональным показателем.

3. Математический диктант на свойства степени с рациональным показателем.

4. Сообщения обучающихся с использованием компьютерной презентации.

5. Работа группами.

6. Решение кроссворда.

7. Подведение итогов, выставление оценок. Рефлексия.

8. Домашнее задание.

Ход урока :

1. Орг. момент. Сообщение темы, целей урока, плана урока. Слайды 1, 2.

2. Актуализация опорных знаний.

1) Повторение свойств степени с рациональным показателем: обучающиеся должны продолжить написанные свойства – фронтальный опрос. Слайд 3.

2) Учащиеся у доски - разбор упражнений из учебника (Алимов Ш.А.): а) № 74, б) № 77.

В) № 82-а;б;в.

№74: а) = = a ;

Б) + = ;

В) : = = = b .

№ 77: а) = = ;

Б) = = = b .

№ 82: а) = = = ;

Б) = = y;

В) () () = .

3. Математический диктант со взаимопроверкой. Обучающиеся обмениваются работами, сверяют ответы и выставляют оценки.

Слайды 4 - 5

4. Сообщения учащихся некоторых исторических фактов по изучаемой теме.

Слайды 6 – 12:

Первый учащийся : Слайд 6

Понятие степени с натуральным показателем сформировалось ещё у древних народов. Квадрат и куб числа использовались для вычисления площадей и объемов. Степени некоторых чисел использовались при решении отдельных задач учеными Древнего Египта и Вавилона.

В III веке вышла книга греческого ученого Диофанта “Арифметика”, в которой было положено начало введению буквенной символики. Диофант вводит символы для первых шести степеней неизвестного и обратных им величин. В этой книге квадрат обозначается знаком и индексом; например, куб – знаком k c индексом r и т.д.

Второй учащийся : Слайд 7

Большой вклад в развитие понятия степени внес древнегреческий ученый Пифагор. У него была целая школа, и всех его учеников называли пифагорейцами. Они придумали, что каждое число можно представить в виде фигур. Например, числа 4, 9 и 16 они представляли в виде квадратов.

Первый учащийся : Слайды 8-9

Слайд 8

Слайд 9

XVI век. В этом веке понятие степени расширилось: его стали относить не только к конкретному числу, но и к переменной. Как тогда говорили «к числам вообще» Английский математик С. Стевин придумал запись для обозначения степени: запись 3(3)+5(2)–4 обозначала такую современную запись 3 3 + 5 2 – 4.

Второй учащийся : Слайд 10

Позже дробные и отрицательные, показатели встречаются в “Полной арифметике” (1544 г.) немецкого математика М.Штифеля и у С. Стевина.

С.Стевин предположил подразумевать под степенью с показателем вида корень, т.е. .

Первый учащийся : Слайд 11

В конце ХVI века Франсуа Виет ввел буквы для обозначения не только переменных, но и их коэффициентов. Он применял сокращения: N, Q, C – для первой, второй и третьей степеней.

Но современные обозначения (типа , ) в XVII веке ввел Рене Декарт.

Второй учащийся : Слайд 12

Современные определения и обозначения степени с нулевым, отрицательным и дробным показателем берут начало от работ английских математиков Джона Валлиса (1616–1703) и Исаака Ньютона.

5. Решение кроссворда.

Обучающиеся получают листы с кроссвордом. Решают парами. Оценку получает пара, решившая первой. Слайды 13-15.

6. Работа группами. Слайд 16.

Учащиеся выполняют самостоятельную работу, работая группами по 4 человека, консультируя друг друга. Затем работы сдаются на проверку.

7. Подведение итогов, выставление оценок.

Рефлексия.

Учащиеся заполняют рефлексивный тест. Отметьте «+», если согласны, и «-» в противном случае.

Рефлексивный тест :

1. Я узнал(а) много нового.

2. Мне это пригодится в дальнейшем.

3. На уроке было над чем подумать.

4. На все возникшие у меня в ходе урока вопросы, я получил(а) ответы.

5. На уроке я поработал(а) добросовестно и цели урока достиг(ла).

8. Задание на дом: Слайд 17.

1) № 76 (1; 3); № 70 (1; 2)

2) По желанию: составить кроссворд с основными понятиями изученной темы.

Использованная литература:

  1. Алимов Ш.А. алгебра и начала анализа 10-11 классы, учебник – М.: Просвещение, 2010.
  2. Алгебра и начала анализа 10 класс. Дидактические материалы. Просвещение, 2012.

Интернет - ресурсы:

  1. Образовательный сайт - RusCopyBook.Com - Электронные учебники и ГДЗ
  2. Сайт Образовательные ресурсы Интернета - школьникам и студентам. http://www.alleng.ru/edu/educ.htm
  3. Сайт Учительский портал - http://www.uchportal.ru/