Рефераты Изложения История

Блез паскаль первая суммирующая. Арифмометр и суммирующие машины: Исторический обзор

Француз Блез Паскаль был сыном сборщика налогов. Наблюдая за бесконечными утомительными расчетами отца, он задумал создать вычислительное устройство. В возрасте 19 лет Блез начал работу над постройкой суммирующей машины. Через двадцать лет Паскаля не стало, но человечество запомнило его как выдающегося математика, философа, писателя и физика. Недаром именем Паскаля назван один из наиболее распространенных языков программирования.

Суммирующая машина Паскаля (механизм)


Суммирующее устройство Паскаля представляло собой ящик со множеством шестеренок. Только за одно десятилетие ученому удалось построить более пятидесяти разных вариантов машины. Во время работы на "паскалине" суммируемые числа вводились путем определенного поворота наборных колес. На каждое были нанесены деления от нуля до девяти, что соответствовало 1-му десятичному разряду числа. Превышение над девяткой колесо "переносило", при этом совершая полный круг и двигая левое "старшее" колесо на единицу вперед.

Несмотря на всеобщее признание, устройство не сделало ученого богатым. Однако сам принцип связанных колес лег в основу большинства вычислительных машин в течение следующих трех веков. За свое изобретение Паскаль получил королевский Патент, согласно которому за ним сохранялись авторские права на производство и продажу машин. Однако одаренный изобретатель на этом не остановился.

В 1648 году Паскаль довел до конца "опыты, касающиеся пустоты". Он доказал отсутствие в природе "страха пустоты". Ученый анализировал равновесие жидкостей под воздействием атмосферного давления. Результаты открытий легли в основу изобретения гидравлического пресса, который значительно опередил технологии того времени.


Суммирующая машина Паскаля (внешний вид)


Но в один прекрасный момент научная стезя опротивела известному ученому. Храм науки оказался тесен, и Паскалю захотелось порадоваться "прелестям" жизни. Свет принял его тут же, и на несколько лет изобретатель погрузился в атмосферу аристократических салонов. Все эти годы младшая сестра Паскаля, монахиня из Пор Рояль, неустанно молилась за спасение заблудшей души своего брата.

В один из ноябрьских вечеров 1654 года Паскаля посетило мистическое озарение. Когда он пришел в себя, то немедленно записал откровение на кусочке пергамента и зашил его в подкладку платья. Эта реликвия была с ученым до самого последнего дня.

В день смерти Паскаля его друзья и обнаружили пергамент. Событие стало поворотным пунктом в жизни изобретателя, оставившего научную практику и опыты. Отныне его писательский талант был направлен на защиту христианства. Ученый публикует несколько художественных эссе под названием "Письма к провинциалу".


Суммирующая машина Паскаля (принципиальная схема)


Последний год своей жизни Паскаль посвятил паломничеству по церквям Парижа. Его преследовали жуткие головные боли, и врачи запретили умственные нагрузки. Однако больной умудрялся записывать мысли, которые приходили ему в голову, на любом подвернувшемся материале. 19 августа 1662 года мучительная продолжительная болезнь взяла верх, и Блез Паскаль скончался.

После его смерти друзья обнаружили множество пачек с записками, которые были перевязаны бечевкой. Позже их расшифровали, а затем издали отдельной книгой. Современному читателю она известна под названием "Мысли".

В честь Паскаля назвали язык программирования. Его отцом считается Никлаус Вирт. Работа над языком Паскаль велась на протяжении 1968-1969 года. Годом рождения языка Паскаль считается 1970. Компьютерная общественность нашла в нем эффективный инструмент для структурного программирования и обучения правильному программированию.

Гениальные люди гениальны во всем. Это расхожее утверждение в полной мере применимо к французскому ученому Блезу Паскалю. В исследовательские интересы изобретателя входила физика и математика, литература и философия. Именно Паскаля считают одним из основателей математического анализа, автором основного закона гидродинамики. Известен он и в качестве первого создателя механических вычислительных машин. Эти устройства — прототипы современных ЭВМ.

На тот момент модели были во многом уникальны. По своим техническим особенностям они превзошли многие аналоги, придуманные до Блеза Паскаля. Какова история "Паскалины"? Где можно встретить эти конструкции сейчас?

Первые прототипы

Попытки провести автоматизацию вычислительных процессов проводились давно. Сильнее всего в этих вопросах преуспели арабы и китайцы. Именно они считаются первооткрывателями такого приспособления, как абак. Принцип действия достаточно прост. Для проведения расчета необходимо переложить кости с одной части на другую. Изделия дополнительно позволяли проводить операции вычитания. Неудобства первых арабских и китайских абаков были связаны только с тем, что камни легко рассыпались во время переноса. В некоторых магазинах в глубинке до сих пор можно встретить простейшие виды арабских абаков, правда, сейчас их называют счетами.

Актуальность проблемы

Свою машину Паскаль начал проектировать в 17 лет. На мысли о необходимости автоматизировать рутинные вычислительные процессы подростка натолкнул опыт собственного отца. Дело в том, что родитель гениального ученого работал сборщиком налогов и долгое время просиживал за утомительными расчетами. Само проектирование заняло долгое время и потребовало от ученого больших физических, умственных и материальных вложений. В последнем случае помощь Блезу Паскалю оказал собственный отец, который быстро понял преимущества разработки сына.

Конкуренты

Естественно, в то время о применении каких-либо электронных средств вычисления и речи не шло. Все осуществлялось только за счет механики. Использовать вращение колес для проведения операции сложения было предложено задолго до Паскаля. Например, не меньшей популярностью в свое время пользовалось устройство, созданное в 1623 году Однако в машине Паскаля были предложены определенные технические новшества, заметно упрощающие процесс сложения. Например, французский изобретатель разработал схему автоматического переноса единицы при переходе числа в высший разряд. Это позволило складывать многозначные цифры без вмешательства человека в счетный процесс, что практически исключило риск ошибок и неточностей.

Внешний вид и принцип действия

Визуально первая суммирующая машина Паскаля напоминала обыкновенный металлический ящик, в котором располагались связанные друг с другом шестеренки. Пользователь через поворот наборных колес устанавливал необходимые ему значения. На каждое из них наносились цифры от 0 до 9. При совершении полного оборота шестерня сдвигала соседнюю (соответствующую более высокому разряду) на одну единицу.

Самая первая модель обладала всего пятью зубчатыми колесами. Впоследствии счетная машина Блеза Паскаля претерпела некоторые изменения, касающиеся увеличения количества шестерен. Их появилось 6, затем это число возросло до 8. Такое нововведение позволило проводить исчисления вплоть до 9 999 999. Ответ же появлялся в верхней части устройства.

Операции

Колеса в счетной машине Паскаля могли вращаться только в одну-единственную сторону. В результате чего пользователь был способен провести исключительно операции сложения. При некоторой сноровке устройства адаптировали и под умножение, но выполнить расчеты в этом случае было заметно сложнее. Возникала необходимость несколько раз подряд складывать одни и те же числа, что было крайне неудобно. Невозможность осуществить вращение колеса в обратную сторону не позволяла проводить вычисления с отрицательными числами.

Распространение

С момента создания прототипа ученый сделал около 50 устройств. Механическая машина Паскаля вызвала небывалый интерес во Франции. К сожалению, широкого распространения изделие так и не смогло завоевать, даже несмотря на резонанс у широкой общественности и в научных кругах.

Главная проблема изделий заключалась в их дороговизне. Производство было затратным, естественно, это отрицательным образом складывалось и на итоговой цене всего прибора. Именно сложности с выпуском привели к тому, что ученый за всю свою жизнь смог продать не более 16 моделей. Люди по достоинству оценили все преимущества автоматического исчисления, но брать приборы не хотели.

Банки

Основной акцент при реализации Блез Паскаль ставил именно на банки. Но финансовые учреждения в большей своей массе отказались приобретать машину для автоматических расчетов. Проблемы возникли из-за сложной денежной политики Франции. В стране на тот момент существовали ливры, денье и су. Одна ливра состояла из 20 су, а су из 12 денье. То есть, десятичная система исчисления отсутствовала как таковая. Именно поэтому использовать машину Паскаля в банковской сфере в реальности было практически невозможно. На принятую в других странах систему исчисления Франция перешла только в 1799 году. Однако и после этого времени применение автоматизированного устройства было заметно осложнено. Это уже касалось упомянутых ранее трудностей в производстве. Труд в основном был ручным, поэтому каждая машина требовала кропотливой работы. В итоге их просто перестали изготавливать в принципе.

Поддержка властей

Одну из первых автоматических счетных машин Блез Паскаль подарил канцлеру Сегье. Именно этот государственный деятель оказал поддержку начинающему ученому на первых этапах создания автоматического устройства. При этом канцлер сумел добиться от короля привилегий на выпуск данного агрегата именно для Паскаля. Хоть изобретение машины всецело принадлежало самому ученому, патентное право в то время во Франции было не развито. Привилегия от монаршей особы была получена в 1649 году.

Продажи

Как было сказано выше, большого распространения машина Паскаля не завоевала. Сам ученый занимался только изготовлением устройств, за продажу отвечал его друг Роберваль.

Развитие

Принцип вращения механических шестерен, реализованный в вычислительной машине Паскаля, был взят за основу и при разработке других аналогичных устройств. Первое удачное усовершенствование приписывают немецкому профессору математики Лейбницу. Создание арифмометра датировано 1673 годом. Сложения чисел выполнялись также в десятичной системе, но само устройство отличалось большим функционалом. Дело в том, что с его помощью можно было не только проводить сложение, но также умножать, вычитать, делить и даже извлекать квадратный корень. Ученый добавил в конструкцию специальное колесо, которое позволяло ускорять повторяющиеся операции по сложению.

Свое изделие Лейбниц презентовал во Франции и Англии. Одна из машин даже попала к русскому императору Петру Первому, который подарил ее китайскому монарху. Изделие было далеко от совершенства. Колесо, которое изобрел Лейбниц для проведения вычитания, впоследствии стало использоваться и в других арифмометрах.

Первый коммерческий успех механических датирован 1820 годом. Калькулятор создал французский изобретатель Шарль Ксавье Томас де Кольмар. Принцип действия во многом напоминает машину Паскаля, но само устройство отличается меньшими размерами, оно немного проще в изготовлении и дешевле. Именно это и предопределило успех у коммерсантов.

Судьба творения

В течение всей свой жизни ученый создал около 50 машин, до наших дней "дожили" единицы. Сейчас достоверно можно отследить судьбу всего 6 устройств. Четыре модели находятся на постоянном хранении в Парижском музее искусств и ремесел, еще две в музее в Клермоне. Оставшиеся вычислительные устройства нашли свое пристанище в частных коллекциях. О том, кто сейчас ими владеет достоверно не известно. Под большим вопросом находится и исправность агрегатов.

Мнения

Некоторые биографы связывают разработку и создание суммирующей машины Паскаля с пошатнувшимся здоровьем самого изобретателя. Как было сказано выше, первые работы ученый начал еще в молодости. Они требовали от автора колоссального напряжения умственных и физических сил. Труд велся на протяжении практически 5 лет. В результате этого Блеза Паскаля начали преследовать сильные головные боли, которые затем сопровождали его всю оставшуюся жизнь.

На этой странице приведены важнейшие события истории развития арифмометров. Следует заметить, что упор сделан не на многочисленные экспериментальные модели, не получившие практического распространения, а на конструкции, производившиеся серийно. Примерно V - VI век до н.э. Появление абака (Египет, Вавилон)

Примерно VI век н.э. Появляются китайские счёты.

1846 г. Счислитель Куммера (Российская империя, Польша). Он сходен с машиной Слонимского (1842, Российская Империя), но компактнее. Был широко распространён во всём мире вплоть до 1970-х годов в качестве дешёвого карманного аналога счёт.

1950-е гг. Расцвет вычислительных автоматов и полуавтоматических арифмометров. Именно в это время выпущена большая часть моделей электрических вычислительных машин.

1962 - 1964 гг. Появление первых электронных калькуляторов (1962 - опытная серия ANITA MK VII (Англия), к концу 1964 электронные калькуляторы выпускаются многими развитыми странами, в т.ч. в СССР (ВЕГА КЗСМ)). Начинается жестокая конкурентная борьба между электронными калькуляторами и мощнейшими вычислительными автоматами. Но на производстве маленьких и дешёвых арифмометров (в основном - неавтоматических и с ручным приводом) появление калькуляторов почти не сказалось.

1968 г. Начато производство Contex-55 - вероятно, самой поздней модели арифмометров с высокой степенью автоматизации.

1969 г. Пик производства арифмометров в СССР. Выпущено около 300 тысяч "Феликсов" и ВК-1.

1978 г. Примерно в это время прекращён выпуск арифмометров "Феликс-М". Возможно, это был последний в мире выпускавшийся тип арифмометров.

1988 г. Последняя достоверно известная дата выпуска механической вычислительной машины - кассового аппарата "Ока".

1995-2002 Механические кассовые аппараты (ККМ) "Ока" (модели 4400, 4401, 4600) исключены из государственного реестра РФ. Видимо, исчезла последняя область применения сложных механических вычислительных машин на территории России.

2008 В некоторых магазинах Москвы всё ещё встречаются счёты...

Логарифмы

Термин «логарифм» возник из сочетания греческих слов logos - отношение, соотношение и arithmos - число.

Основные свойства логарифма позволяют заменить умножение, деление, возведение в степень и извлечение корня более простыми действиями сложения, вычитания, умножения и деления.

Логарифмом обозначается обычно loga N. Логарифм с основанием е = 2,718... называется натуральным и обозначается ln N. Логарифм с основанием 10 называется десятичным и обозначается lg N. Равенство у = loga x определяет логарифмическую функцию.

«Логарифм данного числа N при основании а, показатель степени у, в которую нужно возвести число а, чтобы получить N; таким образом,

Изобретателем логарифмов был Непер (Нейпир) (Napier) Джон (1550-1617), шотландский математик.

Потомок старинного воинственного шотландского рода. Изучал логику, теологию, право, физику, математику, этику. Увлекался алхимией и астрологией. Изобрел несколько полезных сельскохозяйственных орудий. В 1590-х годах пришел к идее логарифмических вычислений и составил первые таблицы логарифмов, однако свой знаменитый труд «Описание удивительных таблиц логарифмов» опубликовал лишь в 1614. В конце 1620-х годов была изобретена логарифмическая линейка, счетный инструмент, использующий таблицы Непера для упрощения вычислений. С помощью логарифмической линейки операции над числами заменяются операциями над логарифмами этих чисел.

В 1617, незадолго до своей смерти, Непер изобрел математический набор для облегчения арифметических вычислений. Набор состоял из брусков с нанесенными на них цифрами от 0 до 9 и кратными им числами. Для умножения какого-либо числа бруски располагали рядом так, чтобы цифры на торцах составляли это число. Ответ можно было увидеть на боковых сторонах брусков. Помимо умножения, палочки Неперапозволяли выполнять деление и извлечение квадратного корня.

В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662).

Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, по всей вероятности, учение Декарта, который утверждал, что мозгу животных, в том числе и человека, присущ автоматизм, поэтому ряд умственных процессов ничем по существу своему не отличается от механических». Косвенным подтверждением этого мнения служит то, что Паскаль поставил перед собой цель создать такую машину. В 18 лет он начинает работать над созданием машины, с помощью которой даже незнакомый с правилами арифметики мог производить различные действия.

Первая работающая модель машины была готова уже в 1642 году. Паскаля она не удовлетворила, и он сразу же начал конструировать новую модель. «Я не экономил,- писал он впоследствии, обращаясь к «другу-читателю»,- ни времени, ни труда, ни средств, чтобы довести ее до состояния быть тебе полезной... Я имел терпение сделать до 50 различных моделей: одни деревянные, другие из слоновой кости, из эбенового дерева, из меди...»



Паскаль экспериментировал не только с материалом, но и с формой деталей машины: модели были сделаны - «одни из прямых стержней или пластинок, другие из кривых, иные с помощью цепей; одни с концентрическими зубчатыми колесами, другие с эксцентриками; одни - движущиеся по прямой линии, другие- круговым образом; одни в форме конусов, другие - в форме цилиндров...»

Наконец в 1645 году арифметическая машина, как назвал ее Паскаль, или Паскалево колесо, как называли ее те, кто был знаком с изобретением молодого ученого, была готова.

Она представляла собой легкий латунный ящичек размером 350X25X75 мм (Рисунок 11.7). На верхней крышке - 8 круглых отверстий, вокруг каждого нанесена круговая шкала.

Рисунок 11.7 - Машина Паскаля со снятой крышкой

Шкала крайнего правого отверстия разделена на 12 равных частей, шкала соседнего с ним отверстия - на 20 частей, шкалы остальных 6 отверстий имеют десятичное деление. Такая градуировка соответствует делению ливра-основной денежной единицы того времени - на более мелкие: 1 су = 1/20 ливра и 1 денье - 1/12 су.

В отверстиях видны зубчатые колеса, находящиеся ниже плоскости верхней крышки. Число зубьев каждого колеса равно числу делений шкалы соответствующего отверстия (например, у крайнего правого колеса 12 зубьев). Каждое колесо может вращаться независимо от другого на собственной оси. Поворот колеса осуществляется от руки с помощью ведущего штифта, который вставляется между двумя смежными зубьями. Штифт поворачивает колесо до тех пор, пока не наталкивается на неподвижный упор, закрепленный в нижней части крышки и выступающий внутрь отверстия левее цифры 1 круговой шкалы. Если, например, вставить штифт между зубьями, расположенными против цифр 3 и 4, и повернуть колесо до упора, то оно повернется на 3/10 полного поворота.

Поворот колеса передается посредством внутреннего механизма машины цилиндрическому барабану, ось которого расположена горизонтально. На боковой поверхности барабана нанесены два ряда цифр; цифры нижнего ряда расположены в порядке возрастания- 0, ..., 9, цифры верхнего ряда - в порядке убывания-9, 8, ..., 1,0. Они видны в прямоугольных окнах крышки. Планка, которая помещается на крышке машины, может передвигаться вверх или вниз вдоль окон, открывая либо верхний, либо нижний ряд чисел в зависимости от того, какое математическое действие нужно произвести.

В отличие от известных счетных инструментов типа абака в арифметической машине вместо предметного представления чисел использовалось их представление в виде углового положения оси (вала) или колеса, которое несет эта ось. Для выполнения арифметических операций Паскаль заменил поступательное перемещение камешков, жетонов и т. д. в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствует сложение пропорциональных им углов.

Колесо, с помощью которого осуществляется ввод чисел (так называемое установочное колесо), в принципе не обязательно должно быть зубчатым - этим колесом может быть, например, плоский диск, по периферии которого через 36° просверлены отверстия, в которые вставляется ведущий штифт.

Нам осталось познакомиться с тем, как Паскаль решил самый, пожалуй, трудный вопрос,- о механизме переноса десятков. Наличие такого механизма, позволяющего вычислителю не тратить внимания на запоминание переноса из младшего разряда в старший,- это наиболее разительное отличие машины Паскаля от известных счетных инструментов.

На Рисунок 11.8 изображены элементы машины, относящиеся к одному разряду: установочное колесо N, цифровой барабан I, счетчик, состоящий из 4 корончатых колес В, одного зубчатого колеса К и механизма передачи десятков. Заметим, что колеса В1 В4 и К не имеют принципиального значения для работы машины и используются лишь для передачи движения установочного колеса N цифровому барабану I. Зато колеса В2 и В3 - неотъемлемые элементы счетчика и в соответствии со «счетно-машинной» терминологией именуются счетными колесами. На

показаны счетные колеса двух соседних разрядов, жестко насаженные на оси А 1 и A 2 , и механизм передачи десятков, который Паскаль назвал «перевязь» (sautoir). Этот механизм имеет следующее устройство.

Рисунок 11.8 - Элементы машины Паскаля, относящиеся к одному разряду числа

Рисунок 11.9 - Механизм передачи десятков в машине Паскаля

На счетном колесе В 1 младшего разряда имеются стержни d, которые при вращении оси A 1 входят в зацепление с зубьями вилки М, расположенной на конце двухколенного рычага D 1 . Этот рычаг свободно вращается на оси А 2 старшего разряда, вилка же несет на себе подпружиненную собачку. Когда при вращении оси А 1 колесо В 1 достигнет позиции, соответствующей цифре б, стержни С1 войдут в зацепление с зубьями вилки, а в тот момент, когда оно перейдет от 9 к 0, вилка выскользнет из зацепления и под действием собственного веса упадет вниз, увлекая за собой собачку. Собачка и протолкнет счетное колесо В 2 старшего разряда на один шаг вперед (то есть повернет его вместе с осью A 2 на 36°). Рычаг Н, оканчивающийся зубом в виде топорика, играет роль защелки, препятствующей вращению колеса В 1 в обратную сторону при поднимании вилки.

Механизм переноса действует только при одном направлении вращения счетных колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил эту операцию операцией сложения с десятичным дополнением.

Пусть, например, необходимо из 532 вычесть 87. Метод дополнения приводит к действиям:

532 - 87 = 532 - (100-13) = (532 + 13) - 100 = 445.

Нужно только не забыть вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Действительно, пусть на 6-разрядной машине выполняется вычитание: 532 - 87. Тогда 000532 + 999913 = 1000445. Но самая левая единица потеряется сама собой, так как переносу из 6-го разряда некуда, деться. В машине Паскаля десятичные дополнения написаны в верхнем ряду цифрового барабана. Для выполнения операции вычитания достаточно передвинуть планку, закрывающую прямоугольные окна, в нижнее положение, сохранив при этом направление вращения установочных колес.

С изобретения Паскаля начинается отсчет времени развития вычислительной техники. В XVII-XVIII вв. один изобретатель за другим предлагают новые варианты конструкций суммирующих устройств и арифмометров, пока, наконец, в XIX в. неуклонно растущий объем вычислительных работ не создал устойчивого спроса на механические счетные устройства и не позволил наладить их серийный выпуск.

До определенного момента своего развития, человечество при подсчете предметов довольствовалось природным «калькулятором» -- данными от рождения десятью пальцами. Когда их стало не хватать, пришлось придумывать различные примитивные инструменты: счетные камешки, палочки, абак, китайский суань-пань, японский соробан, русские счеты.

Устройство этих инструментов примитивно, однако обращение с ними требует изрядной сноровки. Так, например, для современного человека, родившегося в эру калькуляторов, освоить умножение и деление на счетах необычайно сложно. Такие чудеса «костяной» эквилибристики сейчас под силу, пожалуй, лишь микропрограммисту, посвященному в тайны работы интелевского микропроцессора.

Прорыв в механизации счета наступил, когда европейские математики начали наперегонки изобретать арифмометры.

Однако, именно Блез Паскаль, который первым не только сконструировал, но и построил работоспособный арифмометр, начинал, как говорится, с нуля. Блистательный французский ученый, один из создателей теории вероятностей, автор нескольких важных математических теорем, естествоиспытатель, открывший атмосферное давление и определивший массу земной атмосферы, и выдающийся мыслитель, оставивший после себя такие не утратившие и по сей день сочинения как «Мысли» и «Письма к провинциалу».

Мне Блез Паскаль интересен как человек и как изобретатель, поэтому я хочу узнать о его жизни побольше и его изобретениях, а особенно о вычислительной машине.

Паскаль (Pascal) Блез (19. VI. 1623 - 19. VII. 1662) - французский математик, физик и философ (см. рис. 2). Он был третьим ребенком в семье. Его мать умерла, когда ему было только три года. В 1632 семейство Паскаля, покинуло Клермонт и отправилось в Париж.

Отец Паскаля имел хорошее образование и решил непосредственно передать его сыну. Отец решил, что Блез не должен изучать математику до 15 лет, и все математические книги были удалены из их дома. Однако любопытство Блеза, толкнуло его на изучение геометрии в возрасте 12 лет. Он обнаружил, что сумма углов в любом треугольнике равна двум правильным углам. Когда это узнал отец, он смягчался и позволил Блезу изучить Эвклида. В декабре 1639 семейство Паскаля оставило Париж, чтобы жить в Роене, куда отец был назначен налоговым сборщиком Верхней Нормандии.

В 1641 (по другим источникам в 1642) Паскаль сконструировал суммирующую машину. Это был первый цифровой калькулятор, который помог его отцу с работой. Устройство, называющееся "Паскалиной", походило на механический калькулятор 1940-ых. Машина Паскаля получила широкое применение: во Франции она оставалась в употреблении до 1799г., а в Англии даже до 1971 года.

Блез Паскаль внес значительный вклад в развитие математики. В трактате "Опыт теории конических сечений" (1639, изд. 1640) он изложил одну из основных теорем проективной геометрии т. н. Паскаля теорему. К 1654 закончил ряд работ по арифметике, теории чисел, алгебре и теории вероятностей. Паскаль нашел общий признак делимости любого целого числа на любое другое целое число, основанный на знании суммы цифр числа, способ вычисления биномиальных коэффициентов (Арифметический треугольник); дал способ вычисления числа сочетаний из n чисел по m; сформулировал ряд основных положений элементарной теории вероятностей.

Труды Паскаля, содержащие изложенный в геометрической форме интегральный метод решения ряда задач на вычисление площадей фигур, объемов и площадей поверхности тел, а также других задач, связанных с циклоидой, явились существенным шагом в развитии анализа бесконечно малых.

В физике Паскаль занимался изучением барометрического давления и вопросами гидростатики. Его философские воззрения колебались между рационализмом и скептицизмом. Занимался он и литературной деятельностью - его "Письма к провинциалу" оказали значительное влияние на развитие французской художественной прозы и театра 17-18 вв. Он был одним из тех учеников, которого недолюбливали одноклассники. Трудно любить того, у кого средний бал был настолько высок, что по сравнению с ним всякий казался глупым.

Паскаль выделялся своими способностями во всём, чему бы он себя не посвятил: физике, гидростатике, гидродинамике, математике, статистике, изобретении, логике, полемике, философии и прозе. Мы говорим о давлении «Паскаля», Принципе Паскаля, и даже компьютерный язык называется Паскаль. Учёные, которые занимаются исследованием истории литературы, называют Паскаля Отцом Французской Прозы, а богословы обсуждают Пари Паскаля, в то время как евангелисты используют его для свидетельствования грешникам о Евангелии. Он знал, что такое боль, он знал, что такое борьба, и он знал Иисуса Христа так глубоко и чувственно, как знают лишь некоторые.

Все свои открытия он совершил, не дожив до сорока лет. Репутация Паскаля как математика возрастала, и, находясь в зените своей славы, он переписывался с другими выдающимися учёными и философами, среди которых были: Ферма, Декарт, Кристофер Рен, Лейбниц, Гюйгенс, и другие. Он продолжал работать над коническими сечениями, проективной геометрией, вероятностью, биноминальными коэффициентами, циклоидами и многими другими загадками того времени. Иногда он даже спорил со своими известными коллегами о сложных проблемах, которые сам он, конечно же, мог решить.

В физике Паскаль преуспел как в теории, так и в эксперименте. В возрасте 30 лет, он закончил Трактат о Равновесии Жидкостей первая систематическая теория гидростатики. В ней он сформулировал свой известный закон давления, который утверждает, что давление одинаково во всех направлениях на всей поверхности данной глубины. Сегодня этот принцип является фундаментальным во многих областях и применяется во многих объектах, таких как: подводные лодки, дыхательные аппараты для плавания под водой, и многие дыхательные устройства. Применяя этот принцип, Паскаль изобрёл шприц и гидравлический пресс.

Проницательный ум Блеза Паскаля помог ему объяснить поднимающуюся жидкость в барометре не как "свойство жидкости, которая не выносит вакуум", но как давление находящегося снаружи воздуха на жидкость в резервуаре. Он выступал против Декарта (который не верил, что вакуум существует) и других последователей Аристотеля того времени. Заметив, что с высотой атмосферное давление понижается, он сделал вывод, что вакуум находится выше, чем атмосфера. Джеймс Кейфер пишет: «Представление таких результатов это своего рода насмешка над оппонентами Иезуитами. Тем самым он отодвинул их методы назад, и обвинил их в том, что они опираются на авторитет Аристотеля в физике, и в то же самое время игнорируют авторитет Писания и отцов, в религии». Его остроумие, ирония, проницательность, знание, и логика, подкрепленная математикой, сделали его работу яркой и наполненной воодушевлением и силы. Кейфер пишет: «Он учил своих соотечественников, как писать так, чтобы люди читали написанный текст с удовольствием». Его работа и в самом деле читается с удовольствием! Его самая известная работа даже не была названа и не была закончена.

Предположительно, в 30 лет он начал работать над «Апологетикой [защитой] Христианской Религии», но, к сожалению, после его смерти, была найдена лишь стопка беспорядочных бумаг, которые были опубликованы под названием Pensees (Мысли). Тем не менее, Паскаль написал достаточно материала, который заставляет верующих и неверующих размышлять о природе человека, грехе, страданиях, неверии, философии, ложной религии, Иисусе Христе, Писании, небесах и аде и многом другом. Пари не просто слепая надежда, что я окажусь на правильной стороне после того, как умру; это осознанный выбор, который приведёт мою жизнь в порядок в будущем и даёт мне мир, радость и цель в настоящем. Паскаль умер в возрасте 39 лет от рака желудка.

Математик Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты.


Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию.

Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений.

Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением. Первый образец постоянно ломался, и через два года Паскаль сделал более совершенную модель.

Это была чисто финансовая машина: она имела шесть десятичных разрядов и два дополнительных: один поделенный на 20 частей, другой на 12, что соответствовало соотношению тогдашних денежных единиц (1 су = 1/20 ливра, 1 денье = 1/12 су).

Каждому разряду соответствовало колесо с конкретным количеством зубцов. Именно Паскалю принадлежит первый патент на «Паскалево колесо», выданный ему в 1649 году французским королем. В знак уважения к его заслугам в области «вычислительной науки», один из современных языков программирования назван Паскалем.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.

Тем не менее, примерно за 10 лет Паскаль построил около 50 из самых разнообразных материалов: из меди, из различных пород дерева, из слоновой кости.

Одну из них ученый преподнес канцлеру Сегье (Pier Seguier, 1588-1672), какие-то модели распродал, какие-то демонстрировал во время лекций о последних достижениях математической науки. 8 экземпляров дошло до наших дней. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда (нем. Wilhelm Schickard), созданных в 1623 году.

Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцати разрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление, для чего, в дополнение к зубчатым колесам использовался ступенчатый валик. "Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно" - с гордостью писал Лейбниц своему другу.

Прошло еще более ста лет и лишь в конце XVIII века во Франции были осуществлены следующие шаги, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники - "программное" с помощью перфокарт управление ткацким станком, созданным Жозефом Жакаром, и технология вычислений, при ручном счете, предложенная Гаспаром де Прони, разделившего численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. Эти два новшества были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств цифровой вычислительной техники - переход от ручного к автоматическому выполнению вычислений по составленной программе. Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.).

В 1799 году переход Франции на метрическую систему, коснулся также её денежной системы, которая стала, наконец, десятичной. Однако, практически до начала 19-го столетия создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Чарльз Ксавиер Томас де Колмар (англ. Charles Xavier Thomas de Colmar) запатентовал первый механический калькулятор, ставший коммерчески успешным.

В конце XIX века на мировой рынок арифмометров самым решительным образом вторглась Россия. Автором этого прорыва стал обрусевший швед Вильгодт Теофилович Однер (1846-1905), талантливый изобретатель и удачливый бизнесмен. До того, как заняться выпуском счетных машин, Вильгодт Теофилович сконструировал устройство автоматизированной нумерации банкнот, применявшееся при печатании ценных бумаг. Ему принадлежит авторство машины для набивки папирос, автоматического ящика для голосования в Государственной Думе, а также турникетов, применявшиеся во всех судоходных компаниях России.

В 1875 году Однер сконструировал свой первый арифмометр, права на производство которого передал машиностроительному заводу «Людвиг Нобель».

Спустя 15 лет, став владельцем мастерской, Вильгодт Теофилович налаживает в Петербурге выпуск новой модели арифмометра, которая выгодно отличается от существовавших на тот момент счетных машин компактностью, надежностью, простотой в обращении и высокой производительностью.

Спустя три года мастерская становится мощным заводом, производящим в год более 5 тысяч арифмометров. Изделие с клеймом «Механический завод В. Т. Однер, С-Петербург» начинает завоевывать мировую популярность, ему присуждаются высшие награды промышленных выставок в Чикаго, Брюсселе, Стокгольме, Париже. В начале ХХ века арифмометр Однера (см.рис.5) начинает доминировать на мировом рынке.

После скоропостижной кончины «русского Билла Гейтса» в 1905 году дело Однера продолжили его родственники и друзья. Точку в славной истории компании поставила революция: Механический завод В.Т. Однер был преобразован в ремонтный завод.

Однако в середине 1920-х годов выпуск арифмометров в России был возрожден. Наиболее популярная модель, получившая название «Феликс», выпускалась на заводе им. Дзержинского до конца 1960-х годов. Параллельно с «Феликсом» в Советском Союзе был налажен выпуск электромеханических счетных машин серии «ВК», в которых мускульные усилия были заменены электрическим приводом. Данный тип вычислителей был создан по образу и подобию германской машины «Мерседес». Электромеханические машины в сравнении с арифмометрами имели существенно более высокую производительность. Однако создаваемый ими грохот походил на стрельбу из пулемета. Если же в операционном зале работало десятка два «Мерседесов», то в шумовом отношении это напоминало ожесточенный бой.

В 1970-е годы, когда начали появляться электронные калькуляторы -- сперва ламповые, потом транзисторные -- все описанное выше механическое великолепие начало стремительно перемещаться в музеи, где поныне и пребывает

паскаль счетный арифмометр

Заключение

В своей работе я достигла те цели, которые ставила себе раньше. Я узнала о жизни великого учёного Блеза Паскаля. Он внёс значительный вклад в развитие многих наук. Из моей работы понятно, что Блез Паскаль был достаточно образованным человеком, иначе я думаю, что он бы не сделал столько открытий в таких областях знаний как: физика, гидростатика и т.д.

Поверьте, их довольно много. Он является первым создателем вычислительной техники, которая получила широкое применение. Заложенный в её основу принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств. В честь Блеза Паскаля даже назван очень известный язык программирования, который пользуется большой популярностью в сфере профессионального программирования. И из этого следует, что Блез Паскаль был сам по себе гениальный человек, внёсший большой вклад в развитие науки.

Список информационных ресурсов

  • 1. www. calc. ru
  • 2. http://www.icfcst.kiev.ua/museum/Early_r.html
  • 3. http://www.wikiznanie.ru
  • 4. http://www.vokrugsveta.ru/telegraph/technics/189/