Рефераты Изложения История

Пособие-репетитор по химии. Сероводород и сернистый газ Как из сероводорода получить сернистый газ формула

Сероводород и сульфиды . Сероводород H 2 S - бесцветный газ с резким запахом. Очень ядовит, вызывает отравление даже при незначительном содержании в воздухе (около 0,01%). Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом гемоглобина крови, что может привести к обморочному состоянию и смерти от кислородного голодания. В присутствии паров органических веществ токсичность H 2 S резко возрастает.

Вместе с тем сероводород является составной частью некоторых минеральных вод (Пятигорск, Серноводск, Мацеста), применяемых с лечебной целью.

Сероводород содержится в вулканических газах и постоянно образуется на дне Чёрного моря. До верхних слоёв сероводород не доходит, так как на глубине 150 м взаимодействует с проникающим сверху кислородом и окисляется им до серы. Сероводород образуется при гниении белка, поэтому, например, тухлые яйца пахнут сероводородом.

При растворении сероводорода в воде образуется слабая сероводородная кислота, соли которой называют сульфидами. Сульфиды щелочных и щёлочноземельных металлов, а также сульфид аммония хорошо растворяются в воде, сульфиды остальных металлов нерастворимы и окрашены в различные цвета, например: ZnS - белый, PbS - чёрный, MnS - розовый (рис. 120).

Рис. 120.
Сульфиды металлов имеют различную окраску

Сероводород горит. При охлаждении пламени (внесении в него холодных предметов) образуется свободная сера:

2H 2 S + O 2 = 2Н 2 O + 2S↓.

Если же пламя не охлаждать и обеспечить избыток кислорода, то получается оксид серы (IV):

2H 2 S + 3O 2 = 2Н 2 O + 2SO 2 .

Сероводород - сильнейший восстановитель.

Оксид серы (IV), сернистая кислота и её соли . При горении серы, полном сгорании сероводорода и обжиге сульфидов образуется оксид серы (IV) SO 2 , который, как отмечено ранее, часто называют также сернистым газом. Это бесцветный газ с характерным резким запахом. Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту. Она неустойчива и разлагается на исходные вещества:

Соли сернистой кислоты, как двухосновной, могут быть средними - сульфитами, например сульфит натрия Na 2 SO 4 , и кислыми - гидросульфитами, например гидросульфит натрия NaHSO 3 . Гидросульфит и сульфит натрия, как и сернистый газ, используют для отбеливания шерсти, шёлка, бумаги и соломы, а также в качестве консервирующих средств для сохранения свежих плодов и фруктов.

Серная кислота и её соли . При окислении оксида серы (IV) образуется оксид серы (VI):

Реакция начинается только при относительно высоких температурах (420-650 °С) и протекает в присутствии катализатора (платины, оксидов ванадия, железа и т. д.).

Оксид серы (VI) SO 3 в обычных условиях - летучая бесцветная жидкость с удушающим запахом. Этот типичный кислотный оксид, растворяясь в воде, образует серную кислоту:

Н 2 O + SO 3 = H 2 SO 4 .

Химически чистая серная кислота - бесцветная маслянистая тяжёлая жидкость. Она обладает сильным гигроскопическим (водоотнимающим) свойством, поэтому применяется для осушения веществ. Концентрированная серная кислота способна отнимать воду у молекул органических веществ, обугливая их. Если нанести на фильтровальную бумагу рисунок с помощью раствора серной кислоты, а затем подогреть её, то бумага почернеет (рис. 121, а) и рисунок проявится.

Рис. 121.
Обугливание бумаги (а) и сахара (б) концентрированной серной кислотой

Если в высокий стеклянный стакан поместить сахарную пудру, смочить её водой и прилить, перемешивая содержимое стакана стеклянной палочкой, концентрированную серную кислоту, то через 1-2 мин содержимое стакана начнёт чернеть, вспучиваться и в виде объёмистой рыхлой массы подниматься вверх (рис. 121, б). Смесь в стакане при этом сильно разогревается. Уравнение реакции взаимодействия концентрированной серной кислоты с сахарной пудрой (сахарозой С 12 Н 22 O 11)

объясняет опыт: образующиеся в результате реакции газы вспучивают образующийся уголь, выталкивая его из стакана вместе с палочкой.

Концентрированная серная кислота хорошо растворяет оксид серы (VI), раствор SO 3 в серной кислоте называют олеумом.

Правило разбавления концентрированной серной кислоты вы уже знаете, но повторим его ещё раз: нельзя приливать воду к кислоте (почему?), следует осторожно, тоненькой струйкой вливать кислоту в воду, непрерывно перемешивая раствор.

Химические свойства серной кислоты в значительной степени зависят от её концентрации.

Разбавленная серная кислота проявляет все характерные свойства кислот: взаимодействует с металлами, стоящими в ряду напряжений до водорода, с выделением Н 2 , с оксидами металлов (основными и амфотерными), с основаниями, с амфотерными гидроксидами и солями.

Лабораторный опыт № 29
Свойства разбавленной серной кислоты

Проделайте опыты, доказывающие, что серная кислота проявляет типичные свойства кислот.
  1. В две пробирки налейте по 2 мл раствора серной кислоты и опустите: в 1-ю - гранулу цинка, во 2-ю - кусочек меди. Что наблюдаете? Почему результат этого эксперимента именно таков? Запишите молекулярное и сокращённое ионное уравнения, рассмотрите окислительно-восстановительные процессы.
  2. Поместите в пробирку немного чёрного порошка или одну гранулу оксида меди (II), прилейте в неё 1-2 мл раствора серной кислоты. Закрепите пробирку в держателе и подогрейте на пламени спиртовки. Что наблюдаете? Запишите молекулярное и ионные уравнения.
  3. Налейте в пробирку 1-2 мл раствора щёлочи, добавьте 2-4 капли раствора фенолфталеина. Что наблюдаете? Добавьте к этому раствору разбавленную серную кислоту до исчезновения окраски. Как называется эта реакция? Запишите соответствующие молекулярное и ионные уравнения.
  4. Налейте в пробирку 1 мл раствора медного купороса и прилейте 1-2 мл раствора щёлочи. Что наблюдаете? Добавляйте к содержимому пробирки разбавленную серную кислоту до исчезновения осадка. Запишите молекулярные и ионные уравнения проведённых реакций.
  5. В пробирку налейте 1-2 мл раствора сульфата натрия или калия, прилейте 1 мл раствора хлорида кальция. Что наблюдаете? Объясните результат с помощью таблицы растворимости. Почему вместо хлорида бария, который является реактивом на серную кислоту и её соли, вам было предложено воспользоваться хлоридом кальция? В чём достоинства и недостатки этого реактива? Запишите молекулярное и ионные уравнения.

Поскольку серная кислота двухосновна, она образует два ряда солей: средние - сульфаты, например Na 2 SO 4 , и кислые - гидросульфаты, например NaHSO 4 .

Реактивом на серную кислоту и её соли является хлорид бария ВаСl 2 ; сульфат-ионы с ионами Ва 2+ образуют белый нерастворимый сульфат бария, выпадающий в осадок (рис. 122):

Рис. 122.
Качественная реакция на сульфат-ион

Концентрированная серная кислота по свойствам сильно отличается от разбавленной кислоты. Так, при взаимодействии H 2 SO 4(конц) с металлами водород не выделяется. С металлами, стоящими правее водорода в ряду напряжений (медью, ртутью и др.), реакция протекает так:

Процессы окисления и восстановления, происходящие при этом, можно записать так:

При взаимодействии с металлами, находящимися в ряду напряжений до водорода, концентрированная серная кислота восстанавливается до S, SO 2 или H 2 S в зависимости от положения металла в ряду напряжений и условий протекания реакции, например:

Теперь вам понятно, что с H 2 SO 4(конц) взаимодействуют металлы, стоящие в ряду напряжений как до водорода, так и после него. При этом водород не образуется, так как окислителем в такой реакции являются не катионы водорода Н+, как у H 2 SO 4(разб) , а сульфат-ионы .

Железо и алюминий пассивируются концентрированной серной кислотой, т. е. покрываются защитной плёнкой, поэтому концентрированную кислоту можно перевозить в стальных и алюминиевых цистернах.

Будучи нелетучей сильной кислотой, концентрированная серная кислота способна вытеснять другие кислоты из их солей. Вы уже знаете такую реакцию, например получение хлороводорода:

Серная кислота - один из важнейших продуктов, используемых в разных отраслях промышленности (рис. 123). Основные области её применения: производство минеральных удобрений, металлургия, очистка нефтепродуктов.

Рис. 123.
Применение серной кислоты:
1-8 - производство химических продуктов и товаров (кислот 1, взрывчатых веществ 2, минеральных удобрений 3, электролитической меди 4, эмали 5, солей 6, искусственного шёлка 7, лекарств 8); 9 - очистка нефтепродуктов; 10 - в качестве электролита в аккумуляторах

Серную кислоту применяют также в производстве других кислот, моющих средств, взрывчатых веществ, лекарств, красок, в качестве электролита для свинцовых аккумуляторов. На рисунке 124 показано, какое количество серной кислоты (в %) от общего мирового производства используют в различных отраслях промышленности.

Рис. 124.
Доля расхода серной кислоты на различные нужды промышленного производства

Из солей серной кислоты наибольшее значение имеют уже известные вам сульфат натрия, или глауберова соль, Na 2 SO 4 10Н 2 O, гипс CaSO 4 2Н 2 O и сульфат бария BaSO4 (где их применяют?).

Медный купорос CuSO 4 5Н 2 O используют в сельском хозяйстве для борьбы с вредителями и болезнями растений.

Производство серной кислоты . Получают серную кислоту в три стадии.

Химические процессы производства серной кислоты можно представить в виде следующей схемы:

1.Получение SO 2 . В качестве сырья применяют серу, колчедан или сероводород:

2.Получение SO 3 . Этот процесс вам уже известен - окисление кислородом проводят с использованием катализатора (запишите уранение реакции и дайте её полную характеристику).

3. Получение H 2 SO 4 . А вот здесь, в отличие от известной вам реакции, описываемой уравнением:

SO 3 + Н 2 O = H 2 SO 4 ,

процесс растворения оксида серы (VI) проводят не в воде, а в концентрированной серной кислоте, при этом получается знакомый вам олеум.

Производство серной кислоты создаёт немало экологических проблем. Выбросы и отходы сернокислотных заводов оказывают крайне негативное воздействие, вызывая поражения дыхательной системы у человека и животных, гибель растительности и подавление её роста, повышение коррозионного износа материалов, разрушение сооружений из известняка и мрамора, закисление почв и др.

Новые слова и понятия

  1. Сероводород и сульфиды.
  2. Сернистый газ, сернистая кислота, сульфиты.
  3. Серная кислота, разбавленная и концентрированная.
  4. Применение серной кислоты.
  5. Соли серной кислоты: глауберова соль, гипс, сульфат бария, медный купорос.
  6. Производство серной кислоты.

Задания для самостоятельной работы

  1. Какое из веществ проявляет только восстановительные, только окислительные или и окислительные, и восстановительные свойства: сера, сероводород, оксид серы (IV), серная кислота? Почему? Подтвердите свой ответ уравнениями соответствующих реакций.
  2. Охарактеризуйте: а) сернистый газ; б) оксид серы (VI) по плану: получение, свойства, применение. Напишите уравнения соответствующих реакций.
  3. Напишите уравнения реакций, характеризующих свойства разбавленной серной кислоты как электролита. Какое свойство является окислительно-восстановительным процессом? Какие реакции можно отнести к реакциям ионного обмена? Рассмотрите их с точки зрения теории электролитической диссоциации.
  4. Напишите уравнения реакций, лежащих в основе получения серной кислоты, согласно приведённой в параграфе схеме.
  5. В 400 мл воды растворили 40 г оксида серы (VI) (н. у.). Вычислите массовую долю серной кислоты в полученном растворе.
  6. Дайте характеристику реакции синтеза оксида серы (VI), используя все изученные вами классификации реакций.
  7. В 5 л воды растворили 500 г медного купороса. Вычислите массовую долю сульфата меди (II) в полученном растворе.
  8. Почему серную кислоту называют «хлебом химической промышленности»?

- (сернистый водород) H2S, бесцветный газ с запахом тухлых яиц; tпл?85,54 .С, tкип?60,35 .С; при 0 .С сжижается под давлением 1 МПа. Восстановитель. Побочный продукт при очистке нефтепродуктов, коксовании угля и др.; образуется при разложении… … Большой Энциклопедический словарь

СЕРОВОДОРОД - (H2S), бесцветный, ядовитый газ с запахом тухлых яиц. Образуется в процессах гниения, содержится в сырой нефти. Получают действием серной кислоты на сульфиды металлов. Используется в традиционном КАЧЕСТВЕННОМ АНАЛИЗЕ. Свойства: температура… … Научно-технический энциклопедический словарь

СЕРОВОДОРОД - СЕРОВОДОРОД, сероводорода, мн. нет, муж. (хим.). Газ, образующийся при гниении белковых веществ, издающий запах тухлых яиц. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

СЕРОВОДОРОД - СЕРОВОДОРОД, а, муж. Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ. | прил. сероводородный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

сероводород - сущ., кол во синонимов: 1 газ (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СЕРОВОДОРОД - бесцветный ядовитый газ H2S с неприятным специфическим запахом. Обладает слабокислотными свойствами. 1 л С. при t 0 °C и давлении 760 мм составляет 1,539 г. Встречается в нефтях, в природных водах, в газах биохимического происхождения, как… … Геологическая энциклопедия

СЕРОВОДОРОД - СЕРОВОДОРОД, H2S (молекулярный вес 34,07), бесцветный газ с характерным запахом тухлых яиц. Литр газа при нормальных условиях (0°, 760 мм) весит 1,5392 г. Темп, кипения 62°, плавления 83°; С. входит в состав газообразных выделений… … Большая медицинская энциклопедия

сероводород - — Тематики биотехнологии EN hydrogen sulfide … Справочник технического переводчика

сероводород - СЕРОВОДОРОД, а, м Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ и представляющий собой соединение серы с водородом. Сероводород содержится в некоторых минеральных водах и лечебных грязях и используется… … Толковый словарь русских существительных

Книги

  • Как бросить курить! (DVD) , Пелинский Игорь , "Нет ничего легче, чем бросить курить, - я уже тридцать раз бросал" (Марк Твен). Почему люди начинают курить? Чтобы расслабиться, отвлечься, собраться с мыслями, избавиться от стресса или… Категория: Психология. Бизнес Серия: Путь к здоровью и совершенству Издатель: Сова-Фильм , Купить за 275 руб
  • Вестиментиферы – бескишечные беспозвоночные морских глубин , В. В. Малахов , Монография посвящена новой группе гигантских (до 2,5 м) глубоководных животных, обитающих в районах глубоководной гидротермальной активности и холодных углеводородных просачиваний. Наиболее… Категория: Медицина Издатель: Товарищество научных изданий КМК , Купить за 176 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

Сернистый газ имеет молекулярное строение, аналогичное озону. Атом серы, находящийся в центре молекулы, связан с двумя атомами кислорода. Этот газообразный продукт окисления серы не имеет цвета, издает резкий запах, при изменении условий легко конденсируется в прозрачную жидкость. Вещество хорошо растворимо в воде, обладает антисептическими свойствами. В больших количествах получают SO 2 в химической промышленности, а именно в цикле сернокислотного производства. Газ широко используется для обработки сельскохозяйственных и пищевых продуктов, отбеливания тканей в текстильной промышленности.

Систематические и тривиальные названия вещества

Необходимо разобраться в многообразии терминов, относящихся к одному и тому же соединению. Официальное название соединения, химический состав которого отражает формула SO 2 , — диоксид серы. ИЮПАК рекомендует использовать этот термин и его английский аналог — Sulfur dioxide. Учебники для школ и ВУЗов чаще упоминают еще такое название — оксид серы (IV). Римской цифрой в скобках обозначена валентность атома S. Кислород в этом оксиде двухвалентен, а окислительное число серы +4. В технической литературе используются такие устаревшие термины, как сернистый газ, ангидрид сернистой кислоты (продукт ее дегидратации).

Состав и особенности молекулярного строения SO 2

Молекула SO 2 образована одним атомом серы и двумя атомами кислорода. Между ковалентными связями имеется угол, составляющий 120°. В атоме серы происходит sp2-гибридизация — выравниваются по форме и энергии облака одного s и двух p-электронов. Именно они участвуют в образовании ковалентной связи между серой и кислородом. В паре О—S расстояние между атомами составляет 0,143 нм. Кислород более электроотрицательный элемент, чем сера, значит, связывающие пары электронов смещаются от центра к внешним углам. Вся молекула тоже поляризована, отрицательный полюс — атомы О, положительный — атом S.

Некоторые физические параметры диоксида серы

Оксид четырехвалентной серы при обычных показателях окружающей среды сохраняет газообразное агрегатное состояние. Формула сернистого газа позволяет определить его относительную молекулярную и молярную массы: Mr(SO 2) = 64,066, М = 64,066 г/моль (можно округлять до 64 г/моль). Этот газ почти в 2,3 раза тяжелее воздуха (М(возд.) = 29 г/моль). Диоксид обладает резким специфическим запахом горящей серы, который трудно перепутать с каким-либо другим. Он неприятный, раздражает слизистые покровы глаз, вызывает кашель. Но оксид серы (IV) не такой ядовитый, как сероводород.

Под давлением при комнатной температуре газообразный сернистый ангидрид сжижается. При низких температурах вещество находится в твердом состоянии, плавится при -72…-75,5 °C. При дальнейшем повышении температуры появляется жидкость, а при -10,1 °C вновь образуется газ. Молекулы SO 2 являются термически устойчивыми, разложение на атомарную серу и молекулярный кислород происходит при очень высоких температурах (около 2800 ºС).

Растворимость и взаимодействие с водой

Диоксид серы при растворении в воде частично взаимодействует с ней с образованием очень слабой сернистой кислоты. В момент получения она тут же разлагается на ангидрид и воду: SO 2 + Н 2 О ↔ Н 2 SO 3 . На самом деле в растворе присутствует не сернистая кислота, а гидратированные молекулы SO 2 . Газообразный диоксид лучше взаимодействует с прохладной водой, его растворимость понижается с повышением температуры. При обычных условиях может раствориться в 1 объеме воды до 40 объемов газа.

Сернистый газ в природе

Значительные объемы диоксида серы выделяются с вулканическими газами и лавой во время извержений. Многие виды антропогенной деятельности тоже приводят к повышению концентрации SO 2 в атмосфере.

Сернистый ангидрид поставляют в воздух металлургические комбинаты, где не улавливаются отходящие газы при обжиге руды. Многие виды топливных ископаемых содержат серу, в результате значительные объемы диоксида серы выделяется в атмосферный воздух при сжигании угля, нефти, газа, полученного из них горючего. Сернистый ангидрид становится токсичным для человека при концентрации в воздухе свыше 0,03 %. У человека начинается одышка, могут наступить явления, напоминающие бронхит и воспаление легких. Очень высокая концентрация в атмосфере диоксида серы может привести к сильному отравлению или летальному исходу.

Сернистый газ — получение в лаборатории и в промышленности

Лабораторные способы:

  1. При сжигании серы в колбе с кислородом или воздухом получается диоксид по формуле: S + O 2 = SO 2 .
  2. Можно подействовать на соли сернистой кислоты более сильными неорганическими кислотами, лучше взять соляную, но можно разбавленную серную:
  • Na 2 SO 3 + 2HCl = 2NaCl + H 2 SO 3 ;
  • Na 2 SO 3 + H 2 SO 4 (разб.) = Na 2 SO 4 + H 2 SO 3 ;
  • H 2 SO 3 = Н 2 О + SO 2 .

3. При взаимодействии меди с концентрированной серной кислотой выделяется не водород, а диоксид серы:

2H 2 SO 4 (конц.) + Cu = CuSO 4 + 2H 2 O + SO 2 .

Современные способы промышленного производства сернистого ангидрида:

  1. Окисления природной серы при ее сжигании в специальных топках: S + О 2 = SO 2 .
  2. Обжиг железного колчедана (пирита).

Основные химические свойства диоксида серы

Сернистый газ является активным соединением в химическом плане. В окислительно-восстановительных процессах это вещество чаще выступает в качестве восстановителя. Например, при взаимодействии молекулярного брома с диоксидом серы продуктами реакции являются серная кислота и бромоводород. Окислительные свойства SO 2 проявляются, если пропускать этот газ через сероводородную воду. В результате выделяется сера, происходит самоокисление-самовосстановление: SO 2 + 2H 2 S = 3S + 2H 2 O.

Диоксид серы проявляет кислотные свойства. Ему соответствует одна из самых слабых и неустойчивых кислот — сернистая. Это соединение в чистом виде не существует, обнаружить кислотные свойства раствора диоксида серы можно с помощью индикаторов (лакмус розовеет). Сернистая кислота дает средние соли - сульфиты и кислые — гидросульфиты. Среди них встречаются стабильные соединения.

Процесс окисления серы в диоксиде до шестивалентного состояния в ангидриде серной кислоты — каталитический. Получившееся вещество энергично растворяется в воде, реагирует с молекулами Н 2 О. Реакция является экзотермической, образуется серная кислота, вернее, ее гидратированная форма.

Практическое использование сернистого газа

Основной способ промышленного производства серной кислоты, для которого нужен диоксид элемента, насчитывает четыре стадии:

  1. Получение сернистого ангидрида при сжигании серы в особых печах.
  2. Очищение полученного диоксида серы от всевозможных примесей.
  3. Дальнейшее окисление до шестивалентной серы в присутствии катализатора.
  4. Абсорбция триоксида серы водой.

Ранее почти всю двуокись серы, необходимую для производства серной кислоты в промышленных масштабах, получали при обжиге пирита как побочный продукт сталеплавильного производства. Новые виды переработки металлургического сырья меньше используют сжигание руды. Поэтому основным исходным веществом для сернокислотного производства в последние годы стала природная сера. Значительные мировые запасы этого сырья, его доступность позволяют организовать широкомасштабную переработку.

Диоксид серы находит широкое применение не только в химической промышленности, но и в других отраслях экономики. Текстильные комбинаты используют это вещество и продукты его химического взаимодействия для отбеливания шелковых и шерстяных тканей. Это один из видов бесхлорного отбеливания, при котором волокна не разрушаются.

Диоксид серы обладает отличными дезинфицирующими свойствами, что находит применение в борьбе с грибками и бактериями. Сернистым ангидридом окуривают хранилища сельскохозяйственной продукции, винные бочки и подвалы. Используется SO 2 в пищевой промышленности как консервирующее и антибактериальное вещество. Добавляют его в сиропы, вымачивают в нем свежие плоды. Сульфитизация
сока сахарной свеклы обесцвечивает и обеззараживает сырье. Консервированные овощные пюре и соки тоже содержат диоксид серы в качестве антиокислительного и консервирующего агента.

, , 21 , , ,
, 25-26 , 27-28 , , 30, , , , , , , , , , , , /2003;
, , , , , , , , , , , , , /2004

§ 8.1. Окислительно-восстановительные реакции

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ
(продолжение)

2. Озон – окислитель.

Озон – важнейшее для природы и человека вещество.

Озон создает вокруг Земли на высоте от 10 до 50 км озоносферу с максимумом содержания озона на высоте 20–25 км. Находясь в верхних слоях атмосферы, озон не пропускает к поверхности Земли большую часть ультрафиолетовых лучей Солнца, губительно действующих на человека, животный и растительный мир. В последние годы обнаружены участки озоносферы с сильно пониженным содержанием озона, так называемые озоновые дыры. Неизвестно, образовывались ли озоновые дыры раньше. Также непонятны и причины их возникновения. Предполагают, что хлорсодержащие фреоны холодильников и парфюмерных баллончиков под действием ультрафиолетового излучения Солнца выделяют атомы хлора, которые реагируют с озоном и тем самым уменьшают его концентрацию в верхних слоях атмосферы. Опасность озоновых дыр в атмосфере крайне беспокоит ученых.
В нижних слоях атмосферы озон образуется в результате ряда последовательных реакций между кислородом воздуха и оксидами азота, выбрасываемыми плохо отрегулированными двигателями автомобилей и создающимися разрядами высоковольтных линий электропередач. Озон очень вреден для дыхания – он разрушает ткани бронхов и легких. Озон чрезвычайно ядовит (сильнее угарного газа). Предельно допустимая концентрация в воздухе – 10 –5 %.
Таким образом, озон в верхних и в нижних слоях атмосферы оказывает противоположное по своим результатам воздействие на человека и животный мир.
Озон наряду с хлором используют для обработки воды, чтобы разрушить органические примеси и уничтожить бактерии. Однако как хлорирование, так и озонирование воды имеет свои преимущества и недостатки. При хлорировании воды уничтожаются практически полностью бактерии, но образуются вредные для здоровья органические вещества канцерогенного характера (способствуют развитию раковых опухолей) – диоксины и подобные им соединения. При озонировании воды такие вещества не образуются, но озон убивает не все бактерии, и оставшиеся живыми бактерии через некоторое время обильно размножаются, поглощая остатки убитых бактерий, и вода становится даже более загрязненной бактериальной флорой. Поэтому озонирование питьевой воды лучше применять при ее быстром использовании. Очень эффективно озонирование воды в бассейнах, когда вода непрерывно циркулирует через озонатор. Озон применяют также и для очистки воздуха. Он относится к числу экологически чистых окислителей, не оставляющих вредных продуктов своего распада.
Озон окисляет почти все металлы, кроме золота и металлов платиновой группы.

Химические способы получения озона неэффективны или слишком опасны. Поэтому советуем вам получить озон в смеси с воздухом в озонаторе (действие слабого электрического разряда на кислород), имеющемся в школьной физической лаборатории.

Озон чаще всего получают действием на газообразный кислород тихого электрического разряда (без свечения и искр), который происходит между стенками внутреннего и внешнего сосудов озонатора. Простейший озонатор нетрудно изготовить из стеклянных трубок с пробками. Как это сделать, вы поймете из рис. 8.4. Внутренний электрод – металлический стержень (длинный гвоздь), наружный электрод – проволочная спираль. Воздух можно продувать воздушным насосом для аквариума или резиновой грушей от пульверизатора. На рис. 8.4 внутренний электрод находится в стеклянной трубке (как вы думаете, почему? ), но можно собрать озонатор и без нее. Резиновые пробки быстро разъедаются озоном.

Высокое напряжение удобно получить от индукционной катушки системы зажигания автомобиля, непрерывно размыкая соединение с источником низкого напряжения (аккумулятор или выпрямитель тока на 12 В).
Выход озона – несколько процентов.

Качественно обнаружить озон можно при помощи крахмального раствора йодида калия. Этим раствором можно пропитать полоску фильтровальной бумаги или раствор добавить в озонированную воду, а воздух с озоном пропускать через раствор в пробирке. Кислород в реакцию с йодид-ионом не вступает.
Уравнение реакции:

2I – + О 3 + Н 2 О = I 2 + O 2 + 2ОН – .

Напишите уравнения реакций приема и отдачи электронов.
Поднесите к озонатору полоску фильтровальной бумаги, смоченную этим раствором. (Зачем раствор йодида калия должен содержать крахмал?) Определению озона этим способом мешает пероксид водорода (почему?) .
Рассчитайте ЭДС реакции, используя электродные потенциалы:

3. Восстановительные свойства сероводорода и сульфид-иона.

Сероводород – бесцветный газ с запахом тухлых яиц (в состав некоторых белков входит сера).
Для проведения опытов с сероводородом можно пользоваться газообразным сероводородом, пропуская его через раствор с изучаемым веществом, или приливать к исследуемым растворам заранее приготовленную сероводородную воду (это удобнее). Многие реакции можно проводить с раствором сульфида натрия (реакции на сульфид-ион S 2–).
Работать с сероводородом только под тягой! Смеси сероводорода с воздухом сгорают со взрывом.

Сероводород обычно получают в аппарате Киппа, действуя 25%-й серной (разбавленной 1:4) или 20%-й соляной (разбавленной 1:1) кислотой на сульфид железа в виде кусочков размером 1–2 см. Уравнение реакции:

FeS (кр.) + 2Н + = Fe 2+ + H 2 S (г.).

Небольшие количества сероводорода можно получить, поместив кристаллический сульфид натрия в колбу с пробкой, через которую пропущены капельная воронка с краном и отводная трубка. Медленно приливая из воронки 5–10%-ю соляную кислоту (почему не серную?) , колбу постоянно встряхивают покачиванием, чтобы избежать местного скопления непрореагировавшей кислоты. Если этого не делать, неожиданное смешение компонентов может привести к бурной реакции, выталкиванию пробки и разрушению колбы.
Равномерный ток сероводорода получается при нагревании с серой богатых водородом органических соединений, например парафина (1 часть парафина на 1 часть серы, 300 °С).
Для получения сероводородной воды через дистиллированную воду (или прокипяченную) пропускают сероводород. В одном объеме воды растворяется около трех объемов газообразного сероводорода. При стоянии на воздухе сероводородная вода постепенно мутнеет (почему?) .
Сероводород – сильный восстановитель: галогены восстанавливаются им до галогеноводородов, серная кислота – до диоксида серы и серы.
Сероводород ядовит. Предельно допустимая концентрация в воздухе 0,01 мг/л. Даже при незначительных концентрациях сероводород раздражает глаза и дыхательные пути, вызывает головную боль. Концентрации выше 0,5 мг/л опасны для жизни. При более высоких концентрациях поражается нервная система. При вдохе сероводорода возможна остановка сердца и дыхания. Иногда сероводород скапливается в пещерах и канализационных колодцах, и попавший туда человек мгновенно теряет сознание и погибает.
В то же время сероводородные ванны оказывают лечебное действие на организм человека.

3а. Реакция сероводорода с пероксидом водорода.

Изучите действие раствора пероксида водорода на сероводородную воду или раствор сульфида натрия.
По результатам опытов составьте уравнения реакций. Рассчитайте ЭДС реакции и сделайте вывод о возможности ее прохождения.

3б. Реакция сероводорода с серной кислотой.

В пробирку с 2–3 мл сероводородной воды (или раствора сульфида натрия) прилейте по каплям концентрированную серную кислоту (осторожно!) до появления мути. Что это за вещество? Какие другие продукты могут получиться в этой реакции?
Напишите уравнения реакций. Рассчитайте ЭДС реакции, используя электродные потенциалы:

4. Диоксид серы и сульфит-ион.

Диоксид серы, сернистый газ – важнейший загрязнитель атмосферы, выделяемый автомобильными двигателями при использовании плохо очищенного бензина и топками, в которых сгорают серосодержащие угли, торф или мазут. Ежегодно в атмосферу из-за сжигания угля и нефти выбрасываются миллионы тонн диоксида серы.
В природе диоксид серы встречается в вулканических газах. Диоксид серы окисляется кислородом воздуха в триоксид серы, который, поглощая воду (пары), превращается в серную кислоту. Выпадающие кислотные дожди разрушают цементные части построек, памятники архитектуры, высеченные из камня скульптуры. Кислотные дожди замедляют рост растений и даже приводят к их гибели, убивают живые организмы водоемов. Такие дожди вымывают из пашен малорастворимые в воде фосфорные удобрения, которые, попадая в водоемы, приводят к бурному размножению водорослей и быстрому заболачиванию прудов, рек.
Диоксид серы – бесцветный газ с резким запахом. Получать диоксид серы и работать с ним следует под тягой.

Сернистый газ можно получить, поместив в колбу, закрывающуюся пробкой с отводной трубкой и капельной воронкой, 5–10 г сульфита натрия. Из капельной воронки с 10 мл концентрированной серной кислоты (крайняя осторожность!) приливайте ее по каплям к кристаллам сульфита натрия. Вместо кристаллического сульфита натрия можно воспользоваться его насыщенным раствором.
Диоксид серы можно получить также реакцией между металлической медью и серной кислотой. В круглодонную колбу, снабженную пробкой с газоотводной трубкой и капельной воронкой, положите медные стружки или куски проволоки и прилейте из капельной воронки немного серной кислоты (на 10 г меди берется около 6 мл концентрированной серной кислоты). Для начала реакции слегка нагрейте колбу. После этого кислоту приливайте по каплям. Напишите уравнения приема и отдачи электронов и суммарное уравнение.
Свойства диоксида серы можно изучать, пропуская газ через раствор реагента, или в виде водного раствора (сернистой кислоты). Такие же результаты получаются при использовании подкисленных растворов сульфитов натрия Na 2 SO 3 и калия К 2 SO 3 . В одном объеме воды растворяется до сорока объемов сернистого газа (получается ~6%-й раствор).
Диоксид серы токсичен. При легких отравлениях начинается кашель, насморк, появляются слезы, начинается головокружение. Увеличение дозы приводит к остановке дыхания.

4а. Взаимодействие сернистой кислоты с пероксидом водорода.

Предскажите продукты взаимодействия сернистой кислоты и пероксида водорода. Проверьте свое предположение опытом.
К 2–3 мл сернистой кислоты прилейте столько же 3%-го раствора пероксида водорода. Как доказать образование предполагаемых продуктов реакции?
Тот же опыт повторите с подкисленным и щелочным растворами сульфита натрия.
Напишите уравнения реакций и рассчитайте ЭДС процесса.
Выберите нужные вам электродные потенциалы:

4б. Реакция между сернистым газом и сероводородом.

Эта реакция проходит между газообразными SO 2 и H 2 S и служит для получения серы. Реакция интересна также тем, что два загрязнителя атмосферы взаимно уничтожают друг друга. Проходит ли эта реакция между растворами сероводорода и сернистого газа? Ответьте на этот вопрос опытом.
Выберите электродные потенциалы для определения возможности прохождения реакции в растворе:

Попробуйте провести термодинамический расчет возможности прохождения реакций. Термодинамические характеристики веществ для определения возможности прохождения реакции между газообразными веществами следующие:

При каком состоянии веществ – газообразном или в растворе – реакции более предпочтительны?

Химические свойства

Физические свойства

При обычных условиях сероводород – бесцветный газ, с сильным характерным запахом тухлых яиц. Т пл = -86 °С,Т кип = -60 °С, плохо растворим в воде, при 20 °С в 100 г воды растворяется 2,58 мл H 2 S. Очень ядовит, при вдыхании вызывает паралич, что может привести к смертельному исходу. В природе выделяется в составе вулканических газов, образуется при гниении растительных и животных организмов. Хорошо растворим в воде, при растворении образует слабую сероводородную кислоту.

  1. В водном растворе сероводород обладает свойствами слабой двухосновной кислоты:

H 2 S = HS - + H + ;

HS - = S 2- + H + .

  1. Сероводород горит в воздухе голубым пламенем. При ограниченном доступе воздуха образуется свободная сера:

2H 2 S + O 2 = 2H 2 O + 2S.

При избыточном доступе воздуха горение сероводорода приводит к образованию оксида серы (IV):

2H 2 S + 3O 2 = 2H 2 O + 2SО 2 .

  1. Сероводород обладает восстановительными свойствами. В зависимости от условий сероводород может окисляться в водном растворе до серы, сернистого газа и серной кислоты.

Например, он обесцвечивает бромную воду:

H 2 S + Br 2 = 2HBr + S.

взаимодействует с хлорной водой:

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl.

Струю сероводорода можно поджечь, используя диоксид свинца, так как реакция сопровождается большим выделением тепла:

3PbO 2 + 4H 2 S = 3PbS + SO 2 + 4H 2 O.

  1. Взаимодействие сероводорода с сернистым газом используется для получения серы из отходящих газов металлургического и сернокислого производства:

SO 2 + 2H 2 S = 3S + 2H 2 O.

С этим процессом связано образование самородной серы при вулканических процессах.

  1. При одновременном пропускании сернистого газа и сероводорода через раствор щелочи образуется тиосульфат:

4SO 2 + 2H 2 S + 6NaOH = 3Na 2 S 2 O 3 + 5H 2 O.

  1. Реакция разбавленной соляной кислоты с сульфидом железа (II)

FeS + 2HCl = FeCl 2 + H 2 S

  1. Взаимодействие сульфида алюминия с холодной водой

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

  1. Прямой синтез из элементов происходит при пропускании водорода над расплавленной серой:

H 2 + S = H 2 S.

  1. Нагревание смеси парафина с серой.

1.9. Сероводородная кислота и её соли

Сероводородной кислоте присущи все свойства слабых кислот. Она реагирует с металлами, оксидами металлов, основаниями.

Как двухосновная, кислота образует два типа солей – сульфиды и гидросульфиды . Гидросульфиды хорошо растворимы в воде, сульфиды щелочных и щелочно-земельных металлов также, сульфиды тяжелых металлов практически нерастворимы.

Сульфиды щелочных и щелочноземельных металлов не окрашены, остальные имеют характерную окраску, например, сульфиды меди (II), никеля и свинца – черные, кадмия, индия, олова – желтые, сурьмы – оранжевый.


Ионные сульфиды щелочных металлов M 2 S имеют структуру типа флюорита, где каждый атом серы окружен кубом из 8 атомов металла и каждый атом металла – тетраэдром из 4 атомов серы. Сульфиды типа MS характерны для щелочноземельных металлов и имеют структуру типа хлорида натрия, где каждый атом металла и серы окружен октаэдром из атомов другого сорта. При усилении ковалентного характера связи металл – сера реализуются структуры с меньшими координационными числами.

Сульфиды цветных металлов встречаются в природе как минералы и руды, служат сырьем для получения металлов.