Рефераты Изложения История

Правила вычисления производных. Сложная функция


Функции сложного вида не совсем корректно называть термином «сложная функция». К примеру, смотрится очень внушительно, но сложной эта функция не является, в отличие от .

В этой статье мы разберемся с понятием сложной функции, научимся выявлять ее в составе элементарных функций, дадим формулу нахождения ее производной и подробно рассмотрим решение характерных примеров.

При решении примеров будем постоянно использовать таблицу производных и правила дифференцирования , так что держите их перед глазами.


Сложная функция – это функция, аргументом которой также является функция.

С нашей точки зрения, это определение наиболее понятно. Условно можно обозначать как f(g(x)) . То есть, g(x) как бы аргумент функции f(g(x)) .

К примеру, пусть f – функция арктангенса, а g(x) = lnx есть функция натурального логарифма, тогда сложная функция f(g(x)) представляет собой arctg(lnx) . Еще пример: f – функция возведения в четвертую степень, а - целая рациональная функция (смотрите ), тогда .

В свою очередь, g(x) также может быть сложной функцией. Например, . Условно такое выражение можно обозначить как . Здесь f – функция синуса, - функция извлечения квадратного корня, - дробная рациональная функция. Логично предположить, что степень вложенности функций может быть любым конечным натуральным числом .

Часто можно слышать, что сложную функцию называют композицией функций.

Формула нахождения производной сложной функции.

Пример.

Найти производную сложной функции .

Решение.

В данном примере f – функция возведения в квадрат, а g(x) = 2x+1 – линейная функция.

Вот подробное решение с использованием формулы производной сложной функции:

Давайте найдем эту производную, предварительно упростив вид исходной функции.

Следовательно,

Как видите, результаты совпадают.

Постарайтесь не путать, какая функция есть f , а какая g(x) .

Поясним это примером на внимательность.


Пример.

Найти производные сложных функций и .

Решение.

В первом случае f – это функция возведения в квадрат, а g(x) – функция синуса, поэтому
.

Во втором случае f – это функция синуса, а - степенная функция. Следовательно, по формуле произведения сложной функции имеем

Формула производной для функции имеет вид

Пример.

Продифференцировать функцию .

Решение.

В этом примере сложную функцию можно условно записать как , где - функция синуса, функция возведения в третью степень, функция логарифмирования по основанию e , функция взятия арктангенса и линейная функция соответственно.

По формуле производной сложной функции

Теперь находим

Собираем воедино полученные промежуточные результаты:

Страшного ничего нет, разбирайте сложные функции как матрешки.

На этом можно было бы и закончить статью, если бы ни одно но…

Желательно отчетливо понимать, когда применять правила дифференцирования и таблицу производных, а когда формулу производной сложной функции .

СЕЙЧАС БУДЬТЕ ОСОБЕННО ВНИМАТЕЛЬНЫ. Мы поговорим об отличии функций сложного вида от сложных функций. От того, насколько Вы видите это различие, и будет зависеть успех при нахождении производных.

Начнем с простых примеров. Функцию можно рассматривать как сложную: g(x) = tgx , . Следовательно, можно сразу применять формулу производной сложной функции

А вот функцию сложной уже назвать нельзя.

Эта функция представляет собой сумму трех функций , 3tgx и 1 . Хотя - представляет собой сложную функцию: - степенная функция (квадратичная парабола), а f – функция тангенса. Поэтому, сначала применяем формулу дифференцирования суммы:

Осталось найти производную сложной функции :

Поэтому .

Надеемся, что суть Вы уловили.

Если смотреть более широко, то можно утверждать, что функции сложного вида могут входить в состав сложных функций и сложные функции могут быть составными частями функций сложного вида.

В качестве примера разберем по составным частям функцию .

Во-первых , это сложная функция, которую можно представить в виде , где f – функция логарифмирования по основанию 3 , а g(x) есть сумма двух функций и . То есть, .

Во-вторых , займемся функцией h(x) . Она представляет собой отношение к .

Это сумма двух функций и , где - сложная функция с числовым коэффициентом 3 . - функция возведения в куб, - функция косинуса, - линейная функция.

Это сумма двух функций и , где - сложная функция, - функция экспоненцирования, - степенная функция.

Таким образом, .

В-третьих , переходим к , которая представляет собой произведение сложной функции и целой рациональной функции

Функция возведения в квадрат, - функция логарифмирования по основанию e .

Следовательно, .

Подытожим:

Теперь структура функции понятна и стало видно, какие формулы и в какой последовательности применять при ее дифференцировании.

В разделе дифференцирование функции (нахождение производной) Вы можете ознакомиться с решением подобных задач.

Функции сложного вида не всегда подходят под определение сложной функции. Если имеется функция вида y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11 , то ее нельзя считать сложной в отличие от y = sin 2 x .

Данная статья покажет понятие сложной функции и ее выявление. Поработаем с формулами нахождения производной с примерами решений в заключении. Применение таблицы производных и правила дифференцирования заметно уменьшают время для нахождения производной.

Основные определения

Определение 1

Сложной функцией считается такая функция, у которой аргумент также является функцией.

Обозначается это таким образом: f (g (x)) . Имеем, что функция g (x) считается аргументом f (g (x)) .

Определение 2

Если есть функция f и является функцией котангенса, тогда g (x) = ln x – это функция натурального логарифма. Получаем, что сложная функция f (g (x)) запишется как arctg(lnx). Или функция f , являющаяся функцией возведенной в 4 степень, где g (x) = x 2 + 2 x - 3 считается целой рациональной функцией, получаем, что f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, что g (x) может быть сложной. Из примера y = sin 2 x + 1 x 3 - 5 видно, что значение g имеет кубический корень с дробью. Данное выражение разрешено обозначать как y = f (f 1 (f 2 (x))) . Откуда имеем, что f – это функция синуса, а f 1 - функция, располагаемая под квадратным корнем, f 2 (x) = 2 x + 1 x 3 - 5 - дробная рациональная функция.

Определение 3

Степень вложенности определено любым натуральным числом и записывается как y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) .

Определение 4

Понятие композиция функции относится к количеству вложенных функций по условию задачи. Для решения используется формула нахождения производной сложной функции вида

(f (g (x))) " = f " (g (x)) · g " (x)

Примеры

Пример 1

Найти производную сложной функции вида y = (2 x + 1) 2 .

Решение

По условию видно, что f является функцией возведения в квадрат, а g (x) = 2 x + 1 считается линейной функцией.

Применим формулу производной для сложной функции и запишем:

f " (g (x)) = ((g (x)) 2) " = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) · g " (x) = 2 · (2 x + 1) · 2 = 8 x + 4

Необходимо найти производную с упрощенным исходным видом функции. Получаем:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Отсюда имеем, что

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результаты совпали.

При решении задач такого вида важно понимать, где будет располагаться функция вида f и g (x) .

Пример 2

Следует найти производные сложных функций вида y = sin 2 x и y = sin x 2 .

Решение

Первая запись функции говорит о том, что f является функцией возведения в квадрат, а g (x) – функцией синуса. Тогда получим, что

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Вторая запись показывает, что f является функцией синуса, а g (x) = x 2 обозначаем степенную функцию. Отсюда следует, что произведение сложной функции запишем как

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для производной y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) запишется как y " = f " (f 1 (f 2 (f 3 (. . . (f n (x)))))) · f 1 " (f 2 (f 3 (. . . (f n (x))))) · · f 2 " (f 3 (. . . (f n (x)))) · . . . · f n " (x)

Пример 3

Найти производную функции y = sin (ln 3 a r c t g (2 x)) .

Решение

Данный пример показывает сложность записи и определения расположения функций. Тогда y = f (f 1 (f 2 (f 3 (f 4 (x))))) обозначим, где f , f 1 , f 2 , f 3 , f 4 (x) является функцией синуса, функцией возведения в 3 степень, функцией с логарифмом и основанием е, функцией арктангенса и линейной.

Из формулы определения сложной функции имеем, что

y " = f " (f 1 (f 2 (f 3 (f 4 (x))))) · f 1 " (f 2 (f 3 (f 4 (x)))) · · f 2 " (f 3 (f 4 (x))) · f 3 " (f 4 (x)) · f 4 " (x)

Получаем, что следует найти

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) в качестве производной синуса по таблице производных, тогда f " (f 1 (f 2 (f 3 (f 4 (x))))) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) в качестве производной степенной функции, тогда f 1 " (f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) в качестве производной логарифмической, тогда f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) в качестве производной арктангенса, тогда f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При нахождении производной f 4 (x) = 2 x произвести вынесение 2 за знак производной с применением формулы производной степенной функции с показателем, который равняется 1 , тогда f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Производим объединение промежуточных результатов и получаем, что

y " = f " (f 1 (f 2 (f 3 (f 4 (x))))) · f 1 " (f 2 (f 3 (f 4 (x)))) · · f 2 " (f 3 (f 4 (x))) · f 3 " (f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Разбор таких функций напоминает матрешки. Правила дифференцирования не всегда могут быть применены в явном виде при помощи таблицы производных. Зачастую нужно применять формулу нахождения производных сложных функций.

Существуют некоторые различия сложного вида от сложных функций. При явном умении это различать, нахождение производных будет давать особенно легко.

Пример 4

Необходимо рассмотреть на приведении подобного примера. Если имеется функция вида y = t g 2 x + 3 t g x + 1 , тогда ее можно рассмотреть в качестве сложной вида g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, что необходимо применение формулы для сложной производной:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 · g " (x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) · g " (x) = (2 t g x + 3) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция вида y = t g x 2 + 3 t g x + 1 не считается сложной, так как имеет сумму t g x 2 , 3 t g x и 1 . Однако, t g x 2 считается сложной функцией, то получаем степенную функцию вида g (x) = x 2 и f , являющуюся функцией тангенса. Для этого следует продифференцировать по сумме. Получаем, что

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходим к нахождению производной сложной функции (t g x 2) " :

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) · g " (x) = 2 x cos 2 (x 2)

Получаем, что y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функции сложного вида могут быть включены в состав сложных функций, причем сами сложные функции могут являться составными функции сложного вида.

Пример 5

Для примера рассмотрим сложную функцию вида y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Данная функция может быть представлена в виде y = f (g (x)) , где значение f является функцией логарифма по основанию 3 , а g (x) считается суммой двух функций вида h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 и k (x) = ln 2 x · (x 2 + 1) . Очевидно, что y = f (h (x) + k (x)) .

Рассмотрим функцию h (x) . Это отношение l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Имеем, что l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) является суммой двух функций n (x) = x 2 + 7 и p (x) = 3 cos 3 (2 x + 1) , где p (x) = 3 · p 1 (p 2 (p 3 (x))) является сложной функцией с числовым коэффициентом 3 , а p 1 - функцией возведения в куб, p 2 функцией косинуса, p 3 (x) = 2 x + 1 - линейной функцией.

Получили, что m (x) = e x 2 + 3 3 = q (x) + r (x) является суммой двух функций q (x) = e x 2 и r (x) = 3 3 , где q (x) = q 1 (q 2 (x)) - сложная функция, q 1 - функция с экспонентой, q 2 (x) = x 2 - степенная функция.

Отсюда видно, что h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) + r (x)

При переходе к выражению вида k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, что функция представлена в виде сложной s (x) = ln 2 x = s 1 (s 2 (x)) с целой рациональной t (x) = x 2 + 1 , где s 1 является функцией возведения в квадрат, а s 2 (x) = ln x - логарифмической с основанием е.

Отсюда следует, что выражение примет вид k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тогда получим, что

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

По структурам функции стало явно, как и какие формулы необходимо применять для упрощения выражения при его дифференцировании. Для ознакомления подобных задач и и для понятия их решения необходимо обратиться к пункту дифференцирования функции, то есть нахождения ее производной.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на .

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн .

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Содержание

См. также: Доказательство формулы производной сложной функции

Основные формулы

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Пример 2

Найти производную
.

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Пример 3

Найдите производную
.

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Пример 5

Найдите производную функции
.

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.

Дифференцируем следующую часть, применяя полученные результаты.
.
Здесь
.

Дифференцируем следующую часть.

.
Здесь
.

Теперь находим производную искомой функции.

.
Здесь
.

См. также:

На котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию я буду называть внешней функцией , а функцию – внутренней (или вложенной) функцией .

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим:

Пример 1

Найти производную функции

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:

В данном примере уже из моих объяснений интуитивно понятно, что функция – это сложная функция, причем многочлен является внутренней функцией (вложением), а – внешней функцией.

Первый шаг , который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней .

В случае простых примеров вроде понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения при (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет выполнить следующее действие: , поэтому многочлен и будет внутренней функцией :

Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как мы РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. Из урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением , в данном случае:

Обратите внимание, что внутренняя функция не изменилась, её мы не трогаем .

Ну и совершенно очевидно, что

Результат применения формулы в чистовом оформлении выглядит так:

Постоянный множитель обычно выносят в начало выражения:

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Пример 2

Найти производную функции

Пример 3

Найти производную функции

Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение выражения при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание: , значит, многочлен – и есть внутренняя функция:

И, только потом выполняется возведение в степень , следовательно, степенная функция – это внешняя функция:

Согласно формуле , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения . Таким образом, результат применения правила дифференцирования сложной функции следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Пример 4

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

Пример 5

а) Найти производную функции

б) Найти производную функции

Пример 6

Найти производную функции

Здесь у нас корень, а для того, чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Пример 7

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования частного , но такое решение будет выглядеть как извращение необычно. Вот характерный пример:

Пример 8

Найти производную функции

Здесь можно использовать правило дифференцирования частного , но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция.
Используем наше правило :

Находим производную внутренней функции, косинус сбрасываем обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Пример 9

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую, вложены сразу 3, а то и 4-5 функций.

Пример 10

Найти производную функции

Разбираемся во вложениях этой функции. Пробуем вычислить выражение с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Начинаем решать

Согласно правилу сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции: Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции следующий.