Рефераты Изложения История

Определение концентрации растворов с помощью интерферометра рэлея. Примеры интерферометров А также другие работы, которые могут Вас заинтересовать

7. Интерферометр Рэлея

ПНТЕРФЕРОМЕТР РЭЛЕЯ (интерференционный рефрактометр) - интерферометр для измерения показатели преломления, основанный па явлении дифракции света на двух параллельных щелях. Схема Интерферометра Рэлея представлена па (рис.10.) в вертикальной и горизонтальной проекциях.

Ярко освещённая щель малой ширины S служит источником света, расположенным в фокальной плоскости объектива О 1 . Параллельный пучок лучей, выходящий из О 1 , проходит диафрагму D с двумя параллельными щелями и трубки R 1 и R 2 , в которые вводятся исследуемые газы или жидкости. Трубки имеют одинаковые длины и занимают только верхнюю половину пространства между О 1 и объективом зрительной трубы О 2 . В результате интерференции света, дифрагирующего на щелях диафрагмы D, в фокальной плоскости объектива О 2 вместо изображении щели S образуются две системы интерференционных полос, схематически показанные на рис.10. Верхняя система полос образуется лучами, проходящими через трубки R 1 и R 2 , а нижняя -- лучами, идущими мимо них. Интерференционные полосы наблюдаются с помощью короткофокусного цилиндрического окуляра О 3 . В зависимости от разности показателей преломления n 1 и n 2 веществ, помещенных в R 1 и R 2 , верхняя система полос будет смещена в ту или иную сторону. Измеряя величину этого смешения, можно вычислить n 1 - n 2 . Нижняя система полос неподвижна, и от неё отсчитывают перемещения верхней системы. При освещении щели S белым светом центральные полосы обеих интерференционных картин являются ахроматическими, а полосы, расположенные справа и слева от них, окрашены. Это облегчает обнаружение центральных полос. Измерение перемещения верхней системы полос осуществляется применением компенсатора, который вводит между лучами, проходящими через R 1 и R 2 , дополнительную разность фаз до совмещения верхних и нижних систем полос. С помощью интерферометра Рэлея достигается весьма высокая точность измерения до 7- го и даже 8-го десятичного знака. Интерферометр Рэлея применяется для обнаружения малых примесей в воздухе, в воде, для анализа рудничного и печного газов и для других целей.

Ультразвуковой интерферометр - прибор для измерения фазовой скорости и коэффициента поглощения, принцип действия которого основан на интерференции акустических волн. Типичный Ультразвуковой интерферометр (рис...

Интерферометры и их применение

Интерферометр Жамена (интерференционный рефрактометр) -- интерферометр для измерения показателей преломления газов и жидкостей, а также для определения концентрации примесей в воздухе. Интерферометр Жамена (рис.3...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ЗВЁЗДНЫЙ -- интерферометр для измерения угловых размеров звёзд и углового расстояний между двойными звёздами. Если угловое расстояние между двумя звездами очень мало, в телескоп они видны как одна звезда...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ИНТЕНСИВНОСТИ -- устройство, в котором измеряется коэффициент корреляции интенсивности излучения, принимаемого в двух разнесённых точках...

Интерферометры и их применение

Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны...

Интерферометры и их применение

Интерферометр Рождественского - это двухлучевой интерферометр, состоящий из 2-х зеркал M1 , M2 и двух параллельных полупрозрачных пластин P1 , P2 (Рис.8.); M1, P1 и M2, P2 устанавливаются попарно параллельно...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО -- многолучевой интерференционный спектральный прибор с двумерной дисперсией, обладающий высокой разрешающей способностью. Используется как прибор с пространственным разложением излучения в спектр и фотогр...

Квантовая оптика

Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа r?,T не дал желаемых результатов...

Развитие взглядов на природу света. Явление интерференции света

Естественно, что принцип интерференции можно применять при наблюдении не только бактерий, но и при наблюдении звёзд. Это настолько очевидно...

Теория голубого неба

Каких только гипотез не выдвигалось в разное время для объяснения цвета неба. Наблюдая, как дым на фоне темного камина приобретает синеватый цвет, Леонардо да Винчи писал: „...светлота поверх темноты становится синей, тем более прекрасной...

Интерферометр Рэлея

Анимация

Описание

Интерферометр Рэлея представляет собой одно из наиболее чувствительных к разности фазовых набегов волн интерференционных устройств, что позволяет использовать его для точного определения показателей преломления газов при давлении, близком к атмосферному (при этом давлении соответствующий показатель преломления отличается от единицы в четвертом-пятом знаке после запятой).

Схематическое изображение конструкции интерферометра Рэлея представлено на рис. 1.

Схематическое изображение конструкции интерферометра Рэлея

Рис. 1

Пучок света от практически точечного источника S , находящегося в фокусе линзы, превращается этой линзой в параллельный пучок. Далее, за линзой, располагается диафрагма с двумя симметричными относительно главной оси системы отверстиями - вторичными источниками S 1 и S 2 , формирующими два параллельных тонких пучка. Эти пучки, затем, фокусируются второй линзой на экран, находящийся в ее фокальной плоскости. В результате возникает интерференционная картина из горизонтальных полос, как показано на рисунке. При этом в отсутствии по ходу распространения пучков между линзами дополнительных объектов с показателями преломления n 1 (кювета с исследуемым газом) и n 2 (компенсатор фазового набега с известным управляемым набегом фазы оптического излучения в нем), нулевой максимум интерференционной картины лежит на оси системы. Нулевой максимум - это максимум, соответствующий нулевой разности хода D волн, образующих интерференционную картину. При использовании широкополосного излучения (например, естественного света) он легко отличим от максимумов высших порядков m:

D =m l 0 ,

где l 0 - центральная длина волны спектра излучения.

Действительно, легко понять, что он единственный имеет исходную белую окраску, тогда как максимумы высших порядков “растянуты в спектр” из-за того, что условия максимума достигаются при разных смещениях от центра картины для разных длин волн спектра пучка.

Если теперь внести в два распространяющихся в межлинзовом пространстве пучка (т.н. плечи интерферометра) кювету длины L с исследуемым газом n 1 , и управляемую оптическую задержку n 2 (например, такую же кювету с газом, зависимость показателя преломления которого от давления известна), то пучки получат дополнительную разность хода:

D 1 =L(n 2 -n 1 ).

Тем самым нулевая полоса интерференционной картины сместится, и центр поля приобретет окраску.

Чтобы “вернуть картину на место”, необходимо уравнять показатели преломления исследуемого газа и эталонного в двух кюветах, что достигается вариацией давления последнего. В итоге, восстановив центральность нулевой “белой” полосы (а это можно сделать с большой точностью, порядка 1/40 полосы, D m Ј 1/40 ), мы получаем точные сведения о показателе преломления исследуемого газа. Реальные инструменты, выполненные по схеме интерферометра Рэлея, позволяют измерять отличия показателя преломления от единицы по формуле:

(n-1)= l 0 D m/L » 10 -8 .

Временные характеристики

Время инициации (log to от -8 до -7);

Время существования (log tc от -7 до 15);

Время деградации (log td от -8 до -7);

Время оптимального проявления (log tk от -6 до -5).

Диаграмма:

Технические реализации эффекта

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра физики

Определение концентрации растворов с помощью интерферометра рэлея

Методические указания к лабораторной работе № 12

по физике

(Раздел «Оптика»)

Ростов-на-Дону 2011

Составители: д.т.н., проф. С.И. Егорова,

к.т.н., доц. И.Н. Егоров,

к.ф.-м.н., доц. Г.Ф. Лемешко.

«Определение концентрации растворов с помощью интерферометра Рэлея»: Метод. указания. - Ростов н/Д: Издательский центр ДГТУ, 2011. - 8 с.

Печатается по решению методической комиссии факультета «Нанотехнологии и композиционные материалы»

Научный редактор проф., д.т.н. В.С. Кунаков

© Издательский центр ДГТУ, 2011

Цель работы: 1. Изучить принцип действия интерферометра Рэлея.

2. Изучить явления интерференции при помощи интерферометра Релея.

3. Определить концентрацию этилового спирта в воде.

Оборудование: Интерферометр Рэлея, кюветы с исследуемыми растворами.

Краткая теория

Интерференция – это наложение когерентных волн, при котором происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности света.

Когерентными называются волны одинаковой частоты и постоянной разности фаз. Для получения когерентных волн необходимо разделить световой луч, исходящий из одного источника.

Интерференционную картину можно получить с помощью прибора ИТР-1, в основу которого положена схема интерферометра Рэлея, в котором интерференционная картина получается от двух когерентных световых пучков, прошедших через две параллельные щели (рис.1).

Свет от источника 1 (лампочка накаливания) собирается с помощью конденсора на щели 2 , находящейся в фокальной плоскости объектива коллиматора 3 . Параллельный пучок лучей, выходящих из объектива, разделяется двумя щелями диафрагмы 4 . Эти щели можно рассматривать как два источника вторичных световых волн, которые являются когерентными.

Когерентные световые пучки проходят через объектив 6 , причём, верхняя часть пучков проходит через кюветы 5 (рис.1), а нижняя – непосредственно направляется в объектив. В результате в фокальной плоскости объектива происходит интерференция двух пар когерентных пучков. Интерференционная картина, образовавшаяся от двух щелей, представляет собой систему темных и светлых полос. Положение темной (условие минимума) или светлой (условие максимума) полосы определяется оптической разностью хода интерферирующих лучей:

- условие максимума, (1)

- условие минимума, (2)

где - оптическая разность хода, которая равна разности оптических длин путей, т.е.
, (3)

здесь
- показатели преломления,
- пути, пройденные светом,-длина волны света,
- порядок максимума или минимума.

Наблюдение ведётся через окуляр 7 (рис.1).

Интерференционная картина представлена на рис.2. Лучи, проходящие мимо кювет, образуют нижнюю интерференционную картину, а лучи, проходящие через кюветы – верхнюю. Дополнительная разность хода лучей в кюветах вызывает смещение верхней системы относительно нижней. Если заполнить кюветы газами или жидкостями с разными показателями преломления, то появится дополнительная разность хода, определяемая формулой (3).

С помощью компенсационного устройства системы полос можно совместить (рис. 3).

В данной работе кюветы одинаковой длины (). В одной из них находится дистилированная вода, а в другой – раствор этилового спирта в воде. Поэтому дополнительная разность хода лучей:

, (4)

где - длина кюветы,
- показатели преломления раствора и дистилированной воды соответственно.

Интерферометр Рэлея

ПНТЕРФЕРОМЕТР РЭЛЕЯ (интерференционный рефрактометр) - интерферометр для измерения показатели преломления, основанный па явлении дифракции света на двух параллельных щелях. Схема Интерферометра Рэлея представлена па (рис.10.) в вертикальной и горизонтальной проекциях.

Ярко освещённая щель малой ширины S служит источником света, расположенным в фокальной плоскости объектива О 1 . Параллельный пучок лучей, выходящий из О 1 , проходит диафрагму D с двумя параллельными щелями и трубки R 1 и R 2 , в которые вводятся исследуемые газы или жидкости. Трубки имеют одинаковые длины и занимают только верхнюю половину пространства между О 1 и объективом зрительной трубы О 2 . В результате интерференции света, дифрагирующего на щелях диафрагмы D, в фокальной плоскости объектива О 2 вместо изображении щели S образуются две системы интерференционных полос, схематически показанные на рис.10. Верхняя система полос образуется лучами, проходящими через трубки R 1 и R 2 , а нижняя -- лучами, идущими мимо них. Интерференционные полосы наблюдаются с помощью короткофокусного цилиндрического окуляра О 3 . В зависимости от разности показателей преломления n 1 и n 2 веществ, помещенных в R 1 и R 2 , верхняя система полос будет смещена в ту или иную сторону. Измеряя величину этого смешения, можно вычислить n 1 - n 2 . Нижняя система полос неподвижна, и от неё отсчитывают перемещения верхней системы. При освещении щели S белым светом центральные полосы обеих интерференционных картин являются ахроматическими, а полосы, расположенные справа и слева от них, окрашены. Это облегчает обнаружение центральных полос. Измерение перемещения верхней системы полос осуществляется применением компенсатора, который вводит между лучами, проходящими через R 1 и R 2 , дополнительную разность фаз до совмещения верхних и нижних систем полос. С помощью интерферометра Рэлея достигается весьма высокая точность измерения до 7- го и даже 8-го десятичного знака. Интерферометр Рэлея применяется для обнаружения малых примесей в воздухе, в воде, для анализа рудничного и печного газов и для других целей.

Интерферометр Фабри - Перо

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО -- многолучевой интерференционный спектральный прибор с двумерной дисперсией, обладающий высокой разрешающей способностью. Используется как прибор с пространственным разложением излучения в спектр и фотогр. регистрацией и как сканирующий прибор с фотоэлектрической регистрацией. Интерферометр Фабри-Перо представляет собой плоскопараллельный слой из оптически однородного прозрачного материала, ограниченный отражающими плоскостями. Наиболее широко применяемый воздушный интерферометр Фабри-Перо состоит из двух стеклянных или кварцевых пластинок, расположенных на некотором расстоянии d друг от друга (Рис.11.). На обращённые друг к другу плоскости (изготовленные с точностью до 0.01 длины волны) нанесены высокоотражающие покрытия. интерферометр Фабри-Перо располагается между коллиматорами; в фокальной плоскости входного коллиматора устанавливается освещённая диафрагма, служащая источником света для интерферометра Фабри-Перо. Плоская волна, падающая на интерферометр Фабри-Перо в результате многократных отражений от зеркал и частичною выхода после каждого отражения разбивается на большое число плоских когерентных волн, отличающихся по амплитуде и по фазе. Амплитуда когерентных воли убывает но закону геометрической прогрессии, а разность хода между каждой соседней парой когерентных воли, идущих, в данном направлении, постоянна и равна

где п -- показатель преломления среды между зеркалами (для воздуха n=1), и- угол между лучом и нормалью к зеркалам. Пройдя через объектив выходного коллиматора, когерентные волны интерферируют в его фокальной плоскости F и образуют пространственную интерференционную картину и в виде колец равного наклона (рис. 12.). Распределение интенсивности (освещённости) в интерференционной картине описывается выражением

I =ф k BTу/f 2 2 ,

где B - яркость источника, ф к -- коэффициент пропускания объективов коллиматоров. у - площадь сечения осевого параллельного пучка, f 2 - фокусное расстояние объектива выходного коллиматора, Т - функция пропускания интерферометра Фабри-Перо.

T= T макс (1+з 2 sin 2 k?) -1

Где T макс = , k = 2р/л

з = 2/(1- с), ф, с и a - соответственно коэффициент пропускания, отражения и поглощения зеркал, причем ф+ с+a=1.

Функция пропускания Т, а следовательно, и распределения интенсивности имеет осциллирующий характер с резкими максимумами интенсивности (рис. 13), положение которых определяется из условия

где т (целое число) - порядок спектра, л -- длина волны. Посредине между соседними максимумами функция Т имеет минимумы

Поскольку положение интерференционных максимумов зависит от угла и и равного ему угла ч выхода лучей из второй стеклянной пластинки, то интерференционная картина имеет форму концентрических колец (рис.12.), определяемых из условия, локализованных в области геометрического изображения входной диаграммы (рис.11).

Радиус этих колец равен, откуда следует, что при m = const имеется однозначная зависимость между r т и л и, следовательно, интерферометр Фабри-Перо производит пространственное разложение излучения в спектр. Линейное расстояние между максимумами соседних колец и ширина этих колец (рис.13.) уменьшаются с увеличением радиуса, т. е. с увеличением r т интерференционные кольца становятся уже и сгущаются. Ширина колец?r зависит также от коэффициента отражения с и уменьшается с увеличением с.

Светосила реального Интерферометра Фабри-Перо в несколько сотен раз больше светосилы дифракционного спектрометра при равной разрешающей способности, что является его преимуществом. Так как интерферометр Фабри-Перо, обладая высокой разрешающей силой, имеет очень маленькую область дисперсии, то при работе с ним необходима предварительная монохроматизация, чтобы ширина исследуемого спектра была меньше?л. Для этой цели применяют часто приборы скрещенной дисперсии, сочетая интерферометр Фабри-Перо с призменным или дифракционным спектрографом так, чтобы направления дисперсий Интерферометра Фабри-Перо и спектрографа были взаимно перпендикулярны. Иногда для увеличения области дисперсии используют систему из двух поставленных друг за другом Интерферометров Фабри-Перо с различной величиной расстояния d, так чтобы их отношение d 1 /d 2 равнялось целому числу. Тогда область дисперсии?л определяется более «тонким» Интерферометром Фабри-Перо, а разрешающая сила -- более «толстым». При установке двух одинаковых Интерферометров Фабри-Перо увеличивается разрешающая сила и повышается контраст интерференционной картины.

Интерферометры Фабри-Перо широко применяются в ультрафиолетовой, видимой и инфракрасных областях спектра при исследовании тонкой и сверхтонкой структуры спектральных линий, для исследования модовой структуры излучения лазеров и т. п. Интерферометр Фабри-Перо также используется как резонатор в лазерах.