Рефераты Изложения История

Книга: Уравнение линии на плоскости. Лекция линии на плоскости и их уравнения Понятие уравнения линии на плоскости

Линию на плоскости будем рассматривать как геометрическое место точек M(x, y), удовлетворяющих некоторому условию.

Если в декартовой системе координат записать свойство, которым обладают все точки линии, связав координаты и некоторые константы, можно получить уравнение вида: F(x, y) = 0 или .

Пример. Написать уравнение окружности с центром в точке C(x 0 , y 0) и радиуса R.

Окружность – геометрическое место точек, равноудаленных от точки С. Возьмем точку М с текущими координатами. Тогда |CM| = R или или .

Если центр окружности находится в начале координат, то x 2 + y 2 = R 2 .

Не всякое уравнение вида F(x, y) = 0 определяет линию в указанном смысле: x 2 + y 2 = 0 – точка.

Прямая на плоскости.

Прямые на данной плоскости являются частным случаем прямых в пространстве. Поэтому их уравнения можно получить из соответствующих уравнений прямых в пространстве.

Общее уравнение прямой на плоскости. Уравнение прямой с угловым коэффициентом.

Любую прямую в плоскости XOY можно задать как линию пересечения плоскости Ax + By + Cz + D = 0 с плоскостью XOY: z = 0.

- прямая линия в плоскости XOY: Ax + By + D = 0.

Полученное уравнение называется общим уравнением прямой. В дальнейшем его будем записывать в виде:

Ax + By + C = 0 (1)

1) Пусть , тогда или y = kx + b (2) – уравнение прямой с угловым коэффициентом. выясним геометрический смысл k и b.

Положим x = 0. Тогда y = b – начальная ордината прямой.

Положим y = 0. Тогда ; - угловой коэффициент прямой.

Частные случаи: а) b = 0, y=kx – прямая проходит через начало координат; б) k = 0, y = b – прямая параллельна оси ОХ; b) если B = 0, то Ax + C = 0, ,

Это - геометрическое место точек с постоянными абсциссами, равными a, т.е. прямая перпендикулярна оси ОХ.

Уравнение прямой в отрезках.

Пусть дано общее уравнение прямой: Ax + By + C = 0, причем . Разделим обе его части на –C:

или (3),

где ; . Это уравнение прямой в отрезках. Числа a и b – величины отрезков, отсекаемых на осях координат.

Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.



Пусть дана точка M 0 (x 0 , y 0), лежащая на прямой L и угловой коэффициент k. Запишем уравнение:

Здесь b неизвестно. Найдем его, учитывая, что M 0 L:

y 0 = kx 0 + b (**).

Вычтем почленно из (1) (2):

y – y 0 = k(x – x 0) (4).

Уравнение прямой, проходящей через данную точку в данном направлении.

Уравнение прямой, проходящие через две данные точки.

Пусть даны две точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) L. Запишем уравнение (4) в виде: y – y 1 = k(x – x 1). Т.к. M 2 L, то y 2 – y 1 = k(x 2 – x 1). Поделим почленно:

(5),

Это уравнение имеет смысл, если , . Если x 1 = x 2 , то M 1 (x 1 , y 1) и M 2 (x 1 , y 2). Если у 2 = у 1 , то М 1 (х 1 , у 1); М 2 (х 2 , у 1).

Т.о., если один из знаменателей в (5) обращается в нуль, надо приравнять нулю соответствующий числитель.

Пример. М 1 (3, 1) и М 2 (-1, 4). Написать уравнение прямой, проходящей через эти точки. Найти k.

Уравнение линии на плоскости

Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.

Уравнение вида называется уравнением прямой в общем виде.

Если выразить в этом уравнении , то после замены и получим уравнение , называемое уравнением прямой с угловым коэффициентом, причем , где – угол между прямой и положительным направлением оси абсцисс. Если же в общем уравнении прямой перенести свободный коэффициент в правую сторону и разделить на него, то получим уравнение в отрезках

Где и – точки пересечения прямой с осями абсцисс и ординат соответственно.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Прямые называются перпендикулярными, если они пересекаются под прямым углом.

Пусть заданы две прямые и .

Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.

Так как , то угол между этими прямыми находится по формуле

Отсюда можно получить, что при прямые будут параллельными, а при – перпендикулярны. Если прямые заданы в общем виде, то прямые параллельны при условии и перпендикулярны при условии

Расстояние от точки до прямой можно найти по формуле

Нормальное уравнение окружности:

Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса имеет вид:


. Вершинами эллипса называются точки , , ,. Эксцентриситетом эллипса называется отношение

Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы имеет вид:

где - большая полуось, - малая полуось и . Фокусы находятся в точках . Вершинами гиперболы называются точки , . Эксцентриситетом гиперболы называется отношение

Прямые называются асимптотами гиперболы. Если , то гипербола называется равнобочной.

Из уравнения получаем пару пересекающихся прямых и .

Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.

Каноническое уравнение параболы


Прямая называется директрисой, а точка – фокусом.

Понятие функциональной зависимости

Основные вопросы лекции: множества; основные операции над множествами; определение функции, ее область существования, способы задания; основные элементарные функции, их свойства и графики; числовые последовательности и их пределы; предел функции в точке и на бесконечности; бесконечно малые и бесконечно большие величины и их свойства; основные теоремы о пределах; замечательные пределы; непрерывность функции в точке и на интервале; свойства непрерывных функций.

Если каждому элементу множества ставится в соответствие вполне определенный элемент множества , то говорят что на множестве задана функция. При этом называется независимой переменной или аргументом, а – зависимой переменной, а буква обозначает закон соответствия.

Множество называется областью определения или существования функции, а множество – областью значений функции.

Существуют следующие способы задания функции

1. Аналитический способ, если функция задана формулой вида

2. Табличный способ состоит в том, что функция задается таблицей, содержащей значения аргумента и соответствующие значения функции

3. Графический способ состоит в изображении графика функции – множества точек плоскости, абсциссы которых есть значения аргумента , а ординаты – соответствующие им значения функции

4. Словесный способ, если функция описывается правилом ее составления.

Основные свойства функции

1. Четность и нечетность. Функция называется четной, если для всех значений из области определения и нечетной, если . В противном случае функция называется функцией общего вида.

2. Монотонность. Функция называется возрастающей (убывающей) на промежутке , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции.

3. Ограниченность. Функция называется ограниченной на промежутке , если существует такое положительное число , что для любого . В противном случае функция называется неограниченной.

4. Периодичность. Функция называется периодической с периодом , если для любых из области определения функции .

Классификация функций.

1. Обратная функция. Пусть есть функция от независимой переменной , определенной на множестве с областью значений . Поставим в соответствие каждому единственное значение , при котором . Тогда полученная функция , определенная на множестве с областью значений называется обратной.

2. Сложная функция. Пусть функция есть функция от переменной , определенной на множестве с областью значений , а переменная в свою очередь является функцией.

Наиболее часто используются в экономике следующие функции.

1. Функция полезности и функция предпочтений – в широком смысле зависимости полезности, то есть результата, эффекта некоторого действия от уровня интенсивности этого действия.

2. Производственная функция – зависимость результата производственной деятельности от обусловивших его факторов.

3. Функция выпуска (частный вид производственной функции) – зависимость объема производства от начало или потребления ресурсов.

4. Функция издержек (частный вид производственной функции) – зависимость издержек производства от объема продукции.

5. Функции спроса, потребления и предложения – зависимость объема спроса, потребления или предложения на отдельные товары или услуги от различных факторов.

Если по некоторому закону каждому натуральному числу поставлено в соответствие вполне определенное число то говорят, что задана числовая последовательность .

:

Числа называются членами последовательности, а число - общим членом последовательности.

Число называется пределом числовой последовательности , если для любого малого числа найдется такой номер (зависящий от ), что для всех членов последовательности с номерами верно равенство .Предел числовой последовательности обозначается .

Последовательность имеющая предел называется сходящейся, в противном случае – расходящейся.

Число называется пределом функции при , если для любого малого числа найдется такое положительное число , что для всех таких, что верно неравенство .

Предел функции в точке. Пусть функция задана в некоторой окрестности точки , кроме, быть может, самой точки . Число называется пределом функции при , если для любого, даже сколь угодно малого , найдется такое положительное число (зависящий от ), что для всех и удовлетворяющих условию выполняется неравенство . Этот предел обозначается .

Функция называется бесконечно малой величиной при, если ее предел равен нулю.

Свойства бесконечно малых величин

1. Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

2. Произведение бесконечен малой величины на ограниченную функцию есть величина бесконечно малая

3. Частное от деления бесконечно малой величины на функцию предел которой отличен от нуля, есть величина бесконечно малая.

Понятие производной и дифференциала функции

Основные вопросы лекции: задачи, приводящие к понятию производной; определение производной; геометрический и физический смысл производной; понятие дифференцируемой функции; основные правила дифференцирования; производные основных элементарных функций; производная сложной и обратной функции; производные высших порядков, основные теоремы дифференциального исчисления; теорема Лопиталя; раскрытие неопределенностей; возрастание и убывание функции; экстремум функции; выпуклость и вогнутость графика функции; аналитические признаки выпуклости и вогнутости; точки перегиба; вертикальные и наклонные асимптоты графика функции; общая схема исследования функции и построение ее графика, определение функции нескольких переменных; предел и непрерывность; частные производные и дифференциал функции; производная по направлению, градиент; экстремум функции нескольких переменных; наибольшее и наименьшее значения функции; условный экстремум, метод Лагранжа.

Производной функции называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует)

.

Если функция в точке имеет конечную производную, то функция называется дифференцируемой в этой точке. Функция дифференцируемая в каждой точке промежутка , называется дифференцируемой на этом промежутке.

Геометрический смысл производной: производная есть угловой коэффициент (тангенс угла наклона) касательной, приведенной к кривой в точке .

Тогда уравнение касательной к кривой в точке примет вид

Механический смысл производной: производная пути по времени есть скорость точки в момент времени :

Экономический смысл производной: производная объема произведенной продукции по времени есть производительность труда в момент

Теорема. Если функция дифференцируема в точке , то она в этой точке непрерывна.

Производная функции может быть найдена по следующей схеме

1. Дадим аргументу приращение и найдем наращенное значение функции .

2. Находим приращение функции .

3. Составляем отношение .

4. Находим предел этого отношения при, то есть (если этот предел существует).

Правила дифференцирования

1. Производная постоянной равна нулю, то есть.

2. Производная аргумента равна 1, то есть .

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, то есть .

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, то есть

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

.

Теорема. Если и – дифференцируемые функции от своих переменных, то производная сложной функции существует и равна производной данной функции по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по независимой переменной , то есть


Теорема. Для дифференцируемой функции с производной не равной нулю, производная обратной функции равна обратной величине производной данной функции, то есть .

Эластичностью функции называется предел отношения относительного приращения функции к относительному приращению переменной при:

Эластичность функции показывает приближенно, на сколько процентов изменится функция при изменении независимой переменной на один процент.

Геометрически это означает что эластичность функции (по абсолютной величине) равна отношению расстояний по касательной от данной точки графика функции до точек ее пересечения с осями и .

Основные свойства эластичности функции:

1. Эластичность функции равна произведению независимой переменной на темп изменения функции , то есть .

2. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций:

, .

3. Эластичность взаимообратных функций – взаимно обратные величины:

Эластичность функции применяется при анализе спроса и потребления.

Теорема Ферма. Если дифференцируемая на промежутке функция достигает наибольшего или наименьшего значения во внутренней точке этого промежутка, то производная функции в этой точке равна нулю, то есть .

Теорема Ролля. Пусть функция удовлетворяет следующим условиям:

1) непрерывна на отрезке ;

2) дифференцируема на интервале ;

3) на концах отрезка принимает равные значения, то есть .

Тогда внутри отрезка существует по крайней мере одна такая точка , в которой производная функции равна нулю: .

Теорема Лагранжа. Пусть функция удовлетворяет следующим условиям

1. Непрерывна на отрезке .

2. Дифференцируема на интервале ;

Тогда внутри отрезка существует по крайней мере одна такая точка , в которой производная равна частному от деления приращения функции на приращение аргумента на этом отрезке, то есть .

Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле. Итак, если имеется неопределенность вида или , то

Теорема (достаточное условие возрастания функции)

Если производная дифференцируемой функции положительна внутри некоторого промежутка Х, то она возрастаетна этом промежутке.

Теорема (достаточное условие убывания функции), Если производная дифференцируемой функции отрицательна внутри некоторого промежутка, то она убывает на этом промежутке.

Точка называется точкой максимума функции , если в некоторой окрестности точки выполняется неравенство .

Точка называется точкой минимума функции , если в некоторой окрестности точки выполняется неравенство .

Значения функции в точках и называются соответственно максимумом и минимумом функции. Максимум и минимум функции объединяются общим названием экстремума функции.

Для того, чтобы функция имела экстремум в точке необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Первое достаточное условие экстремума. Теорема.

Если при переходе через точку производная дифференцируемой функции меняет свой знак с плюса на минус, то точка есть точка максимума функции , а если с минуса на плюс, – то точка минимума.

Схема исследования функции на экстремум.

1. Найти производную .

2. Найти критические точки функции, в которых производная или не существует.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов функции.

4. Найти экстремумы (экстремальные значения) функции.

Второе достаточное условие экстремума. Теорема.

Если первая производная дважды дифференцируемой функции равна нулю в некоторой точке , а вторая производная в этой точке положительна, то есть точка минимума функции , если отрицательна, то – точка максимума.

Для отыскания наибольшего и наименьшего значений на отрезке пользуемся следующей схемой.

1. Найти производную .

2. Найти критические точки функции, в которых или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее .

Функция называется выпуклой вверх на промежутке Х, если отрезок соединяющий любые две точки графика лежит под графиком функции.

Функция называется выпуклой вниз на промежутке Х, если отрезок соединяющий любые две точки графика лежит над графиком функции.

Теорема. Функция выпукла вниз (вверх) на промежутке Х тогда и только тогда, когда ее первая производная на этом промежутке монотонно возрастает (убывает).

Теорема. Если вторая производная дважды дифференцируемой функции положительна (отрицательна) внутри некоторого промежутка Х, то функция выпукла вниз (вверх) на этом промежутке.

Точкой перегиба графика непрерывной функции называется точка, разделяющая интервалы, в которых функция выпукла вниз и вверх.

Теорема (необходимое условие перегиба). Вторая производная дважды дифференцируемой функции в точке перегиба равна нулю, то есть .

Теорема (достаточное условие перегиба). Если вторая производная дважды дифференцируемой функции при переходе через некоторую точку меняет свой знак, то есть точка перегиба ее графика.

Схема исследования функции на выпуклость и точки перегиба:

1. Найти вторую производную функции .

2. Найти точки, в которых второй производная или не существует.

3. Исследовать знак второй производной слева и справа от найденных точек и сделать вывод об интервалах выпуклости и наличии точек перегиба.

4. Найти значения функции в точках перегиба.

При исследовании функции на построение их графиков рекомендуется использовать следующую схему:

1. Найти область определения функции.

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты

4. Исследовать поведение функции в бесконечности, найти горизонтальные или наклонные асимптоты.

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциалом функции называется главная, линейная относительно часть приращения функции, равная произведению производной на приращении независимой переменной.

Пусть имеется переменных величин, и каждому набору их значений из некоторого множества Х соответствует одно вполне определенное значение переменной величины . Тогда говорят, что задана функция нескольких переменных .

Переменные называются независимыми переменными или аргументами, - зависимой переменной. Множество Х называется областью определения функции.

Многомерным аналогом функции полезности является функция , выражающая зависимость от приобретенных товаров.

Также на случай переменных обобщается понятие производственной функции, выражающей результат производственной деятельности от обусловивших его факторов . меньшее, чем по определению и непрерывны в самой точке. Тогда частные производные., и найти критические точки функции.

3. Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточного условия сделать вывод о наличии экстремумов.

Найти экстремумы (экстремальные значения) функции.


Литература

1. Высшая математика для экономистов: Учебник для вузов / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2003.

2.Е.С. Кочетков, С.О. Смерчинская Теория вероятностей в задачах и упражнениях / М. ИНФРА-М 2005.

3. Высшая математика для экономистов: Практикум / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2004. Ч. 1, 2

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М., Высшая школа, 1977

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М., Высшая школа, 1977

6. М.С. Красс Математика для экономических специальностей: Учебник/ М. ИНФРА-М 1998.

7. Выгодский М.Я. Справочник по высшей математике. – М., 2000.

8.Берман Г.Н. Сборник задач по курсу математического анализа. – М.: Наука, 1971.

9.А.К. Казашев Сборник задач по высшей математике для экономистов – Алматы - 2002 г.

10.Пискунов Н.С. Дифференциальное и интегральное исчисление. – М.: Наука, 1985, Т. 1,2.

11.П.Е. Данко, А.Г. Попов, Т.Я. Кожевников Высшая математика в упражнениях и задачах/ М. ОНИКС-2005.

12.И.А. Зайцев Высшая математика/ М. Высшая школа-1991 г.

13.Головина Л.И. Линейная алгебра и некоторые ее приложения. – М.: Наука, 1985.

14.Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы анализа экономики. – М.: ДИС, 1997.

15.Карасев А.И., Аксютина З.М., Савельева Т.И. Курс высшей математики для экономических вузов. – М.: Высшая школа, 1982 – Ч 1, 2.

16.Колесников А.Н. Краткий курс математики для экономистов. – М.: Инфра-М, 1997.

17.В.С. Шипацев Задачник по высшей математике-М. Высшая школа, 2005 г.

Определение . Уравнением линии на плоскости (относительно выбранной системы координат) называется такое уравнение с двумя переменными

x , y любой точки данной линии и не удовлетворяют координаты ни одной точки, не лежащей на этой линии.

Здесь F(x, y) x и y .

Уравнение поверхности

Определение . Уравнением поверхности (в фиксированной системе координат) называется такое уравнение с тремя переменными

которому удовлетворяют координаты x , y , z любой точки данной поверхности и только они.

Здесь F(x, y) - некоторая зависимость между x , y и z .

Уравнение линии в пространстве

Линию в пространстве можно рассматривать как пересечение двух поверхностей, поэтому она определяется двумя уравнениями. Пусть l - линия, по которой пересекаются поверхности, определяемые уравнениями F 1 (x, y, z)=0 и F 2 (x, y, z)=0 , то есть множество общих точек этих поверхностей, тогда координаты любой точки линии l одновременно удовлетворяют обоим уравнениям

Эти уравнения и являются уравнениями указанной линии.

Например, уравнения

определяют окружность радиуса R=2 , лежащую в плоскости Oxy . Полярные координаты

Зафиксируем на плоскости точку O и назовем ее полюсом (Рис. 1(a)). Луч [OP ), исходящий из полюса, назовем полярной осью . Выберем масштаб для измерения длин отрезков и условимся, что поворот вокруг точки O против часовой стрелки будем считать положительным.


Рис. 1

Рассмотрим любую точку M на заданной плоскости, обозначим через ρ ее расстояние до полюса и назовем полярным радиусом . Угол, на который нужно повернуть полярную ось [OP ), чтобы она совпадала с [OM ) обозначим через φ и назовем полярным углом .

Определение . Полярными координатами точки M называются ее полярный радиус ρ и полярный угол φ .

Обозначение : M(ρ, φ) .

Любой точке плоскости соответствует определенное значение ρ≥0 . Значение φ для точек, отличных от точки O , определено с точностью до слагаемого 2kπ , k∈Z . Для полюса ρ=0 , а φ не определено. Чтобы каждая точка плоскости получила вполне определенные значения полярных координат, достаточно считать, что 0≤φ<2π , а в полюсе φ=0 . Указанные значения φ называются главными .

Рассмотрим декартову прямоугольную систему координат: полюс совпадает с началом, а полярная ось - с положительной полуосью Ox . Декартовы координаты точки M(x, y) , полярные координаты точки M(ρ, φ) .

Связь между прямоугольными декартовыми координатами точки и ее полярными координатами:

Цилиндрические и сферические координаты

В некоторой плоскости Π фиксируем точку O и исходящий из нее луч [OP ) (Рис. 1(b)). Через точку O поведем прямую перпендикулярную плоскости Π и укажем на ней положительное направление; полученную ось обозначим Oz . Выберем масштаб для измерения длин. Пусть M N - ее проекция на плоскость Π , M z - проекция на Oz . Обозначим через ρ и φ полярные координаты точки N в плоскости Π относительно полюса O и полярной оси OP .

Определение . Цилиндрическими координатами точки M называются числа ρ , φ , z , где ρ , φ - полярные координаты точки N (ρ≥0 , 0≤φ≤2π ), а z=OM z - величина отрезка оси Oz .

Запись M(ρ, φ, z) означает, что точка M имеет цилиндрические координаты ρ , φ , z . Наименование «цилиндрические координаты» объясняется тем, что координатная поверхность ρ=const является цилиндром.

Если выбрать систему прямоугольных декартовых координат, то декартовы координаты x , y , z точки M будут связаны с ее цилиндрическими координатами ρ , phi , z формулами

Выберем масштаб для измерения длин отрезков, зафиксируем плоскость Π с точкой O и полуосью Ox , ось Oz , перпендикулярную плоскости Π (Рис. 1(c)). Пусть M - произвольная точка пространства, N - ее проекция на плоскость Π , r - расстояние точки M до начала координат, θ - угол, образуемый отрезком с осью Oz , phi - угол, на который нужно повернуть ось Ox против часовой стрелки, чтобы она совпала с лучом ON . θ называется широтой , φ - долготой .

Определение . Сферическими координатами точки M называются числа r , θ , φ , определенные выше.

Обозначение : M(r, θ, φ) .

Наименование «сферические координаты» связано с тем, что координатная поверхность r=const является сферой.

Для того, чтобы соответствие между точками пространства и тройками сферических координат (r, θ, φ ) было взаимно однозначным считают, что

Если выбрать оси прямоугольной декартовой системы координат как на рисунке, то декартовы координаты x , y , z точки M связаны с ее сферическими координатами r , θ , φ формулами

Преобразования прямоугольных координат на плоскости

а) Перенос начала или параллельный перенос .

Это означает, что при переходе от системы координат Oxy (старая) к системе координат O 1 x′y′ (новая) направление осей координат остается прежним, а за новое начало координат принята точка O 1 (a, b) , старые координаты которой x=a , y=b . Относительно таких систем говорят, что одна получена из другой путем параллельного переноса.

Связь между старыми и новыми координатами некоторой точки M плоскости определяется следующими формулами:

  • старые через новые координаты: x=x′+a , y=y′+b
  • новые через старые координаты: x′=x-a , y′=y-b
б) Поворот координатных осей .

При этом новая сиuтема Ox′y′ получается путем поворота старой Oxy на угол α вокруг точки O против часовой стрелки. С каждой из этих координат свяжем полярную систему координат, тогда

Вспоминаем формулы, выражающие координаты точки в декартовой системе через координаты точки в полярной системе

Теперь выражаем старые декартовы прямоугольные координаты x , y точки M через ее новые координаты x′ , y′ :

Следовательно, старые через новые координаты выражаются следующим образом:

Для того, чтобы выразить x′ , y′ через x , y можно поступить следующим образом. Считаем систему Ox′y′ старой, тогда переход к новой системе Oxy совершается поворотом на угол (), поэтому в формулах достаточно поменять местами x→x′ , y→y′ , записать () вместо α , тогда имеем формулы, выражающие новые координаты через старые.

Уравнение линии на плоскости

Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.

Уравнение вида называется уравнением прямой в общем виде.

Если выразить в этом уравнении , то после замены и получим уравнение , называемое уравнением прямой с угловым коэффициентом, причем , где – угол между прямой и положительным направлением оси абсцисс. Если же в общем уравнении прямой перенести свободный коэффициент в правую сторону и разделить на него, то получим уравнение в отрезках

Где и – точки пересечения прямой с осями абсцисс и ординат соответственно.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Прямые называются перпендикулярными, если они пересекаются под прямым углом.

Пусть заданы две прямые и .

Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.

Так как , то угол между этими прямыми находится по формуле

Отсюда можно получить, что при прямые будут параллельными, а при – перпендикулярны. Если прямые заданы в общем виде, то прямые параллельны при условии и перпендикулярны при условии

Расстояние от точки до прямой можно найти по формуле

Нормальное уравнение окружности:

Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса имеет вид:


. Вершинами эллипса называются точки , , ,. Эксцентриситетом эллипса называется отношение

Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы имеет вид:

где - большая полуось, - малая полуось и . Фокусы находятся в точках . Вершинами гиперболы называются точки , . Эксцентриситетом гиперболы называется отношение

Прямые называются асимптотами гиперболы. Если , то гипербола называется равнобочной.

Из уравнения получаем пару пересекающихся прямых и .

Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.

Каноническое уравнение параболы


Прямая называется директрисой, а точка – фокусом.

Понятие функциональной зависимости

Основные вопросы лекции: множества; основные операции над множествами; определение функции, ее область существования, способы задания; основные элементарные функции, их свойства и графики; числовые последовательности и их пределы; предел функции в точке и на бесконечности; бесконечно малые и бесконечно большие величины и их свойства; основные теоремы о пределах; замечательные пределы; непрерывность функции в точке и на интервале; свойства непрерывных функций.

Если каждому элементу множества ставится в соответствие вполне определенный элемент множества , то говорят что на множестве задана функция. При этом называется независимой переменной или аргументом, а – зависимой переменной, а буква обозначает закон соответствия.

Множество называется областью определения или существования функции, а множество – областью значений функции.

Существуют следующие способы задания функции

1. Аналитический способ, если функция задана формулой вида

2. Табличный способ состоит в том, что функция задается таблицей, содержащей значения аргумента и соответствующие значения функции

3. Графический способ состоит в изображении графика функции – множества точек плоскости, абсциссы которых есть значения аргумента , а ординаты – соответствующие им значения функции

Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.

Уравнение вида называется уравнением прямой в общем виде.

Если выразить в этом уравнении, то после замены и получим уравнение, называемое уравнением прямой с угловым коэффициентом, причем, где - угол между прямой и положительным направлением оси абсцисс. Если же в общем уравнении прямой перенести свободный коэффициент в правую сторону и разделить на него, то получим уравнение в отрезках

Где и - точки пересечения прямой с осями абсцисс и ординат соответственно.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Прямые называются перпендикулярными, если они пересекаются под прямым углом.

Пусть заданы две прямые и.

Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.

Так как, то угол между этими прямыми находится по формуле

Отсюда можно получить, что при прямые будут параллельными, а при - перпендикулярны. Если прямые заданы в общем виде, то прямые параллельны при условии и перпендикулярны при условии

Расстояние от точки до прямой можно найти по формуле

Нормальное уравнение окружности:

Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса имеет вид:

где - большая полуось, - малая полуось и. Фокусы находятся в точках. Вершинами эллипса называются точки,. Эксцентриситетом эллипса называется отношение

Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы имеет вид:

где - большая полуось, - малая полуось и. Фокусы находятся в точках. Вершинами гиперболы называются точки, . Эксцентриситетом гиперболы называется отношение

Прямые называются асимптотами гиперболы. Если, то гипербола называется равнобочной.

Из уравнения получаем пару пересекающихся прямых и.

Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.

Каноническое уравнение параболы