Рефераты Изложения История

Реакции гидроксидов. Гидроксиды

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ОПРЕДЕЛЕНИЕ

Гидроксидами называются сложные вещества, в состав которых входят атомы металлов, соединенные с одной или несколькими гидроксогруппами.

Большинство оснований - твердые вещества с различной растворимостью в воде. Гидроксид меди (II) голубого цвета (рис. 1), гидроксид железа (III) бурого, большинство других белого цвета.

Рис. 1. Гидроксид меди (II). Внешний вид.

Получение гидроксидов

Растворимые основания (щелочи) в лаборатории можно получить при взаимодействии активных металлов и их оксидов с водой:

CaO + H 2 O = Ca(OH) 2 .

Щелочи гидроксид натрия и гидроксид кальция получают электролизом водных растворов хлорида натрия и хлорида калия.

Нерастворимые в воде основания получают по реакции солей с щелочами в водных растворах:

FeCl 3 + 3NaOH aq = Fe(OH) 3 ↓ + 3NaCl.

Химические свойства гидроксидов

Растворимые и нерастворимые основания имеют общее свойства: они реагируют с кислотами с образованием солей и воды (реакция нейтрализации):

NaOH + HCl = NaCl + H 2 O;

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O.

Растворы щелочей изменяют цвет некоторых веществ - лакмуса, фенолфталеина и метилового оранжевого, называемых индикаторами (табл. 1).

Таблица 1. Изменение цвета индикаторов под воздействием растворов кислот и оснований.

Кроме общего свойства, щелочи и нерастворимые в воде основания обладают также специфическими. Например, при нагревании голубого осадка гидроксида меди (II) образуется вещество черного цвета - это оксид меди (II):

Cu(OH) 2 = CuO + H 2 O.

Щелочи, в отличие от нерастворимых оснований, при нагревании обычно не разлагаются. Их растворы действуют на индикаторы, разъедают органические вещества, реагируют с растворами солей (если в их состав входит металл, способный образовать нерастворимое основание) и кислотными оксидами:

Fe 2 (SO 4) 3 + 6KOH = 2Fe(OH) 3 ↓ + 3K 2 SO 4 ;

2KOH + CO 2 = K 2 CO 3 + H 2 O.

Применение гидроксидов

Гидроксиды находят широкое применение в промышленности и быту. Например, большое значение имеет гидроксид кальция. Это белый рыхлый порошок. При смешивании его с водой образуется так называемое известковое молоко. Так как гидроксид кальция немного растворяется в воде, то после отфильтровывания известкового молока получается прозрачный раствор - известковая вода, которая мутнеет при пропускании через неё диокисда углерода. Гашеную известь применяют дляприготовления бордосской смеси -средства борьбы с болезнями и вредителями растений. Известковое молоко широко используют в химической промышленности, например при производстве сахара, соды и других веществ.

Гидроксид натрия применяют для очистки нефти, производства мыла, в текстильной промышленности. Гидроксид калия и гидроксид лития используют в аккумуляторах.

Примеры решения задач

ПРИМЕР 1

Задание В одном из гидроксидов олова массовая доля элементов равна: олова - 63,6%; кислорода - 34,2%; водорода - 2,2%. Определите формулу этого гидроксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (олово), «у» (кислород) и «z» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(Sn)/Ar(Sn) : ω(O)/Ar(O) : ω(H)/Ar(H);

x:y:z = 63,6/119: 34,2/16: 2,1/1;

x:y:z = 0,53: 2,14: 2,1 = 1: 4: 4.

Значит формула гидроксида олова имеет вид Sn(OH) 4 .

Ответ Формула гидроксида олова имеет вид Sn(OH) 4

ПРИМЕР 2

Задание Определите массовую долю гидроксида бария в растворе, полученном при смешивании воды массой 50 г и оксида бария массой 1,2 г.
Решение Массовая доля вещества Х в растворе рассчитывается по следующей формуле:

ω (Х) = m(X) / m solution × 100%.

Масса раствора складывается из масс растворенного вещества и растворителя:

m solution = m(H 2 O) + m(BaO) = 50 + 1,2 = 51,2 г.

Запишем уравнение реакции получения гидроксида бария:

BaO + H 2 O = Ba(OH) 2 .

Рассчитаем количества моль исходных веществ:

n(H 2 O) = m(H 2 O) / M(H 2 O);

M(H 2 O) = 18 г/моль;

n(H 2 O) = 50 / 18 = 2,8 моль.

n(BaO) = m(BaO) / M(BaO);

M(BaO) = 153 г/моль;

n(BaO) = 1,2 / 153 = 0,008 моль.

Расчет ведем по соединению, находящемуся в недостатке (оксид бария). Согласно уравнению

n(BaO) :n(Ba(OH) 2) = 1:1, т.е. n(Ba(OH) 2) = n(BaO) = 1,04 моль.

Тогда масса образовавшегося гидроксида бария будет равна:

m(Ba(OH) 2) = n(Ba(OH) 2) × M(Ba(OH) 2);

M(Ba(OH) 2) = 171 г/моль;

m(Ba(OH) 2) = 0,008 ×171 = 1,368 г.

Найдем массовую долю гидроксида бария в растворе:

ω (Ba(OH) 2) = 1,368 / 51,2 × 100% = 2,67%.

Ответ Массовая доля гидроксида бария равна 2,67%

ГИДРОКСИДЫ, неорганические соединения металлов общей формулы М(OH)n, где М металл, n его степень окисления. Гидроксиды основания или амфотерные (обладают кислотными и основными свойствами) соединения, гидроксиды щелочных и щелочно земельных… … Современная энциклопедия

Химические соединения оксидов с водой. Гидроксиды многих металлов основания, а неметаллов кислоты. Гидроксиды, проявляющие как основные, так и кислотные свойства, называются амфотерными. Обычно термин гидроксид относится только к основаниям. См.… … Большой Энциклопедический словарь

ГИДРОКСИДЫ, неорганические химические соединения, содержащие ион ОН, проявляющие свойства ОСНОВАНИЙ (веществ, присоединяющих протоны и реагирующих с кислотой, образующих при этом соль и воду). Сильные неорганические основания, такие как… … Научно-технический энциклопедический словарь

ГИДРОКСИДЫ - хим. соединения (см.) с водой. Г. многих металлов (см.), а неметаллов (см.). В формуле основания на первом месте ставится хим. символ металла, на втором кислорода и на последнем водорода (гидроксид калия КОН, гидроксид натрия NaOH и др.). Группа… … Большая политехническая энциклопедия

Химические соединения оксидов с водой. Гидроксиды многих металлов основания, а неметаллов кислоты. Гидроксиды, проявляющие как основные, так и кислотные свойства, называются амфотерными. Обычно термин «гидроксиды» относится только к основаниям … Энциклопедический словарь

Неорг. соед. металлов общей ф лы М(ОН)n, где и степень окисления металла М. Являются основаниями или амфотерными соединениями. Г. щелочных, щел. зем. металлов и Тl(I) наз. щелочами, Кристаллич. решетки Г. щелочных и щел. зем. металлов содержат… … Химическая энциклопедия

Неорганич. соединения, содержащие одну или неск. групп ОН. Могут быть основаниями или амфотерными соединениями (см. Амфотерность). Г. встречаются в природе в виде минералов, например гидраргиллит А1(ОН)3, брусит Mg(OH)2 … Большой энциклопедический политехнический словарь

Хим. соед. оксидов с водой. Г. мн. металлов основания, а неметаллов кислоты. Г., проявляющие как основные, так и кислотные свойства, наз. амфотерными. Обычно термин Г. относится только к основаниям. См. также Щёлочи … Естествознание. Энциклопедический словарь

гидроксиды - гидрокс иды, ов, ед. ч. с ид, а … Русский орфографический словарь

гидроксиды - мн., Р. гидрокси/дов; ед. гидрокси/д (2 м) … Орфографический словарь русского языка

Книги

  • Химия. Учебник для академического бакалавриата , Зайцев О.С.. При раскрытии курса особое внимание уделено вопросам термодинамики и кинетики химических реакций. Впервые представлены вопросы новой области химических знаний, крайне важной для специалистов…
  • Неорганическая и аналитическая химия скандия , Л. Н. Комиссарова. В монографии обобщены сведения об основных группах неорганических соединений скандия (интерметаллиды, бинарные бескислородные соединения, в том числе галогенидыи роданиды, сложные оксиды,…

Физические свойства

Общая формула гидроксидов щелочных металлов – MOН.

Все гидроксиды щелочных металлов – бесцветные гигроскопичные вещества, легко расплывающиеся на воздухе, очень хорошо растворимы в воде и этаноле, при переходе от LiOH к CsOH растворимость увеличивается.

Некоторые физические свойства гидроксидов щелочных металлов приведены в таблице.

Химические свойства

Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития при нагревании до температуры 600°С разлагается:

2LiOH = Li 2 O + H 2 O.

Все гидроксиды проявляют свойства сильных оснований. В воде практически нацело диссоциируют:

NaOH = Na + + OH - .

Реагируют с оксидами неметаллов:

KOH + CO 2 = KHCO 3 ;

2NaOH + CO 2 = Na 2 CO 3 + H 2 O;

2KOH + 2NO 2 = KNO 3 + KNO 2 + H 2 O.

Взаимодействуют с кислотами, вступают в реакцию нейтрализации:

NaOH + HCl = NaCl + H 2 O;

KOH + HNO 3 = KNO 3 + H 2 O.

Вступают в обменные реакции с солями:

2NaOH + CuCl 2 = Cu(OH) 2 + 2NaCl.

Реагируют с галогенами:

2KOH + Cl 2 = KClO + KCl + H 2 O (на холоде) ;

6KOH + 3Cl 2 = KClO 3 + 5KCl + 3Н 2 О (при нагревании).

В расплавленном состоянии взаимодействуют с амфотерными металлами и их оксидами:

2KOH + Zn = K 2 ZnO 2 + H 2 ;

2KOH + ZnO = K 2 ZnO 2 + H 2 O.

Водные растворы гидроксидов при взаимодействии с амфотерными металлами, их оксидами и гидроксидами образуют гидроксокомплексы:

2NaOH + Be + 2H 2 O = Na 2 + H 2 ;

2NaOH + BeO + H 2 O = Na 2 ;

2NaOH + Be(OH) 2 = Na 2 .

Водные растворы и расплавы гидроксидов реагируют с бором и кремнием, их оксидами и кислотами:

4NaOH + 4B + 3O 2 = 4NaBO 2 + 2H 2 O (расплав);

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 (раствор).

Получение

Гидроксиды лития, натрия и калия получают электролизом концентрированных растворов их хлоридов, при этом на катоде выделяется водород, на аноде образуется хлор:

2NaCl + 2H 2 O H 2 + 2NaOH + Cl 2 .

Гидроксиды рубидия и цезия получают из их солей при помощи обменных реакций:

Rb 2 SO 4 + Ba(OH) 2 = 2RbOH + BaSO 4 .

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ

Свойства щелочноземельных металлов

Атомный номер Название Атомная масса Электронная конфигурация r г/см 3 t°пл. °C t°кип. °C ЭО Атомный радиус, нм Степень окисления
Бериллий Be 9,01 2s 2 1,86 1,5 0,113 +2
Магний Mg 24,3 3s 2 1,74 649,5 1,2 0,16 +2
Кальций Ca 40,08 4s 2 1,54 1,0 0,2 +2
Стронций Sr 87,62 5s 2 2,67 1,0 0,213 +2
Барий Ba 137,34 6s 2 3,61 0,9 0,25 +2
Радий Ra 7s 2 ~6 ~700 0,9 +2

Физические свойства

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства

1. Очень реакционноспособны.

2. Обладают положительной валентностью +2.

3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4. Обладают большим сродством к кислороду (восстановители).

5. С водородом образуют солеобразные гидриды ЭH 2 .

6. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

Нахождение в природе

3BeO Al 2 O 3 6SiO 2 – берилл

MgCO 3 – магнезит

CaCO 3 MgCO 3 – доломит

KCl MgSO 4 3H 2 O – каинит

KCl MgCl 2 6H 2 O – карналлит

CaCO 3 – кальцит (известняк, мрамор и др.)

Ca 3 (PO 4) 2 – апатит, фосфорит

CaSO 4 2H 2 O – гипс

CaSO 4 – ангидрит

CaF 2 – плавиковый шпат (флюорит)

SrSO 4 – целестин

SrCO 3 – стронцианит

BaSO 4 – барит

BaCO 3 – витерит

Получение

Бериллий получают восстановлением фторида:

BeF 2 + Mg – t ° ® Be + MgF 2

Барий получают восстановлением оксида:

3BaO + 2Al – t ° ® 3Ba + Al 2 O 3

Остальные металлы получают электролизом расплавов хлоридов:

CaCl 2 ® Ca + Cl 2 ­

катод: Ca 2+ + 2ē ® Ca 0

анод: 2Cl - – 2ē ® Cl 0 2 ­

Металлы главной подгруппы II группы - сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: ––Be–Mg–Ca–Sr–Ba®

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являтся сильными основаниями:

Mg + 2H 2 O – t ° ® Mg(OH) 2 + H 2 ­

Ca + 2H 2 O ® Ca(OH) 2 + H 2 ­

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO 2:

2Mg + O 2 ® 2MgO

Ba + O 2 ® BaO 2

3. С другими неметаллами образуются бинарные соединения:

Be + Cl 2 ® BeCl 2 (галогениды)

Ba + S ® BaS(сульфиды)

3Mg + N 2 ® Mg 3 N 2 (нитриды)

Ca + H 2 ® CaH 2 (гидриды)

Ca + 2C ® CaC 2 (карбиды)

3Ba + 2P ® Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все металлы растворяются в кислотах:

Ca + 2HCl ® CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) ® MgSO 4 + H 2 ­

Бериллий также растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O ® Na 2 + H 2 ­

5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:

Ca 2+ - темно-оранжевый

Sr 2+ - темно-красный

Ba 2+ - светло-зеленый

Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.

Оксиды щелочноземельных металлов

Получение

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 – t ° ® CaO + CO 2 ­

2Mg(NO 3) 2 – t ° ® 2MgO + 4NO 2 ­ + O 2 ­

Химические свойства

Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами

MgO + H 2 O ® Mg(OH) 2

3CaO + P 2 O 5 ® Ca 3 (PO 4) 2

BeO + 2HNO 3 ® Be(NO 3) 2 + H 2 O

BeO - амфотерный оксид, растворяется в щелочах:

BeO + 2NaOH + H 2 O ® Na 2

Гидроксиды щелочноземельных металлов R(OH) 2

Получение

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2H 2 O ® Ba(OH) 2 + H 2 ­

CaO(негашеная известь) + H 2 O ® Ca(OH) 2 (гашеная известь)

Химические свойства

Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 – нерастворим в воде, растворяется в щелочах). Основность R(OH) 2 увеличивается с увеличением атомного номера:

Be(OH) 2 – амфотерный гидроксид

Mg(OH) 2 – слабое основание

остальные гидроксиды - сильные основания (щелочи).

1) Реакции с кислотными оксидами:

Ca(OH) 2 + SO 2 ® CaSO 3 ¯ + H 2 O

Ba(OH) 2 + CO 2 ® BaCO 3 ¯ + H 2 O

2) Реакции с кислотами:

Mg(OH) 2 + 2CH 3 COOH ® (CH 3 COO) 2 Mg + 2H 2 O

Ba(OH) 2 + 2HNO 3 ® Ba(NO 3) 2 + 2H 2 O

3) Реакции обмена с солями:

Ba(OH) 2 + K 2 SO 4 ® BaSO 4 ¯+ 2KOH

4) Реакция гидроксида бериллия со щелочами:

Be(OH) 2 + 2NaOH ® Na 2

Жесткость воды

Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость – хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+ .

Калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам. Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH - . Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье. Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина. В водной среде избыток ионов OH - определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых равна 2 или 3. Первое соединение характеризуется признаками второе - амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Физическая характеристика

Основания - это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами - элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию. Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду. Например, основание меди разлагается следующим образом:

Cu(OH) 2 = CuO + H 2 O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений - кислот и оснований - именуют в химии реакцией нейтрализации. Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты - соли и воду. Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H 2 O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду - дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или может реагировать и с кислотами, и с щелочами - его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания. Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия. Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей - это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.