Рефераты Изложения История

Теория вероятностей и математическая статистика. Основное понятие теории вероятности

ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что наши понятия слабы;
но потому, что сии вещи не входят в круг наших понятий.
Козьма Прутков

Основная цель изучения математики в средних специальных учебных заведениях состоит в том, чтобы дать студентам набор математических знаний и навыков, необходимых для изучения других программных дисциплин, использующих в той или иной мере математику, для умения выполнять практические расчеты, для формирования и развития логического мышления.

В данной работе последовательно вводятся все базовые понятия раздела математики "Основы теории вероятностей и математической статистики", предусмотренные программой и Государственными образовательными стандартами среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.), формулируются основные теоремы, большая часть которых не доказывается. Рассматриваются основные задачи и методы их решения и технологии применения этих методов к решению практических задач. Изложение сопровождается подробными комментариями и многочисленными примерами.

Методические указания могут быть использованы для первичного ознакомления с изучаемым материалом, при конспектировании лекций, для подготовки к практическим занятиям, для закрепления полученных знаний, умений и навыков. Кроме того, пособие будет полезно и студентам- старшекурсникам как справочное пособие, позволяющее быстро восстановить в памяти то, что было изучено ранее.

В конце работы приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Методические указания предназначены для студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные закономерности массовых случайных событий. Она является теоретической базой для математической статистики, занимающейся разработкой методов сбора, описания и обработки результатов наблюдений. Путем наблюдений (испытаний, экспериментов), т.е. опыта в широком смысле слова, происходит познание явлений действительного мира.

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая.

Случайное явление можно охарактеризовать отношением числа его наступлений к числу испытаний, в каждом из которых при одинаковых условиях всех испытаний оно могло наступить или не наступить.

Теория вероятностей есть раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении.

Математическая статистика - это раздел математики, который имеет своим предметом изучения методов сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия решений.

При этом под статистическими данными понимается совокупность чисел, которые представляют количественные характеристики интересующих нас признаков изучаемых объектов. Статистические данные получаются в результате специально поставленных опытов, наблюдений.

Статистические данные по своей сущности зависят от многих случайных факторов, поэтому математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется комбинаторикой, решаются некоторые задачи, связанные с рассмотрением множеств и составлением различных комбинаций из элементов этих множеств. Например, если взять 10 различных цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то будем получать различные числа, например 143, 431, 5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций отличаются только порядком цифр (например, 143 и 431), другие - входящими в них цифрами (например, 5671 и 1207), третьи различаются и числом цифр (например, 143 и 43).

Таким образом, полученные комбинации удовлетворяют различным условиям.

В зависимости от правил составления можно выделить три типа комбинаций: перестановки, размещения, сочетания .

Предварительно познакомимся с понятием факториала .

Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут .

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и , то можно вынести за скобки

Тогда получим

в) .

Перестановки.

Комбинация из n элементов, которые отличаются друг от друга только порядком элементов, называются перестановками.

Перестановки обозначаются символом Р n , где n- число элементов, входящих в каждую перестановку. (Р - первая буква французского слова permutation - перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числу перестановок из 6 элементов, т.е.

Размещения.

Размещениями из m элементов в n в каждом называются такие соединения, которые отличаются друг от друга либо самими элементами (хотя бы одним), либо порядком из расположения.

Размещения обозначаются символом , где m - число всех имеющихся элементов, n - число элементов в каждой комбинации. (А- первая буква французского слова arrangement , что означает "размещение, приведение в порядок").

При этом полагают, что nm.

Число размещений можно вычислить по формуле

,

т.е. число всех возможных размещений из m элементов по n равно произведению n последовательных целых чисел, из которых большее есть m .

Запишем эту формулу в факториальной форме:

Пример 3. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов?

Решение. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е.

.

Сочетания.

Сочетаниями называются все возможные комбинации из m элементов по n , которые отличаются друг от друга по крайней мере хотя бы одним элементом (здесь m и n- натуральные числа, причем n m ).

Число сочетаний из m элементов по n обозначаются (С -первая буква французского слова combination - сочетание).

В общем случае число из m элементов по n равно числу размещений из m элементов по n , деленному на число перестановок из n элементов:

Используя для чисел размещений и перестановок факториальные формулы, получим:

Пример 4. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?

Решение. Так как порядок выбранных четырех человек не имеет значения, то это можно сделать способами.

Находим по первой формуле

.

Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний:

(по определению полагают и );

.

1.2. Решение комбинаторных задач

Задача 1. На факультете изучается 16 предметов. На понедельник нужно в расписание поставить 3 предмета. Сколькими способами можно это сделать?

Решение. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3.

Задача 2. Из 15 объектов нужно отобрать 10 объектов. Сколькими способами это можно сделать?

Задача 3. В соревнованиях участвовало четыре команды. Сколько вариантов распределения мест между ними возможно?

.

Задача 4. Сколькими способами можно составить дозор из трех солдат и одного офицера, если имеется 80 солдат и 3 офицера?

Решение. Солдат в дозор можно выбрать

способами, а офицеров способами. Так как с каждой командой из солдат может пойти любой офицер, то всего имеется способов.

Задача 5. Найти , если известно, что .

Так как , то получим

,

,

По определению сочетания следует, что , . Т.о. .

1.3. Понятие о случайном событии. Виды событий. Вероятность события

Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием.

Результат этого действия или наблюдения называется событием .

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным . В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти,- невозможным .

События называются несовместными , если каждый раз возможно появление только одного из них.

События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными , если в условиях испытания они, являясь единственными его исходами, несовместны.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, Д, : .

Полной системой событий А 1 , А 2 , А 3 , : , А n называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании.

Если полная система состоит из двух несовместных событий, то такие события называются противоположными и обозначаются А и .

Пример. В коробке находится 30 пронумерованных шаров. Установить, какие из следующих событий являются невозможными, достоверными, противоположными:

достали пронумерованный шар (А);

достали шар с четным номером (В);

достали шар с нечетным номером (С);

достали шар без номера (Д).

Какие из них образуют полную группу?

Решение. А - достоверное событие; Д - невозможное событие;

В и С - противоположные события.

Полную группу событий составляют А и Д, В и С .

Вероятность события, рассматривается как мера объективной возможности появления случайного события.

1.4. Классическое определение вероятности

Число, являющееся выражением меры объективной возможности наступления события, называется вероятностью этого события и обозначается символом Р(А).

Определение. Вероятностью события А называется отношение числа исходов m, благоприятствующих наступлению данного события А , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е. .

Следовательно, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, подсчитать все возможные несовместные исходы n, выбрать число интересующих нас исходов m и вычислить отношение m к n .

Из этого определения вытекают следующие свойства:

Вероятность любого испытания есть неотрицательное число, не превосходящее единицы.

Действительно, число m искомых событий заключено в пределах . Разделив обе части на n , получим

2. Вероятность достоверного события равна единице, т.к. .

3. Вероятность невозможного события равна нулю, поскольку .

Задача 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Решение. Общее число различных исходов есть n =1000. Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле, получим

.

Задача 2. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Решение. Число всех равновозможных независимых исходов n равно числу сочетаний из 18 по 5 т.е.

Подсчитаем число m, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 качественных и 2 бракованных. Число способов выборки двух бракованных деталей из 4 имеющихся бракованных равно числу сочетаний из 4 по 2:

Число способов выборки трех качественных деталей из 14 имеющихся качественных равно

.

Любая группа качественных деталей может комбинироваться с любой группой бракованных деталей, поэтому общее число комбинаций m составляет

Искомая вероятность события А равна отношению числа исходов m, благоприятствующих этому событию, к числу n всех равновозможных независимых исходов:

.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них.

Сумму двух событий обозначают символом А+В, а сумму n событий символом А 1 +А 2 + : +А n .

Теорема сложения вероятностей.

Вероятность суммы двух несовместных событий равна суммевероятностей этих событий.

Следствие 1. Если событие А 1 , А 2 , : ,А n образуют полную систему, то сумма вероятностей этих событий равна единице.

Следствие 2. Сумма вероятностей противоположных событий и равна единице.

.

Задача 1. Имеется 100 лотерейных билетов. Известно, что на 5 билетов попадает выигрыш по 20000 руб., на 10 - по 15000 руб, на 15 - по 10000 руб., на 25 - по 2000 руб. и на остальные ничего. Найти вероятность того, что на купленный билет будет получен выигрыш не менее 10000 руб.

Решение. Пусть А, В, и С- события, состоящие в том, что на купленный билет падает выигрыш, равный соответственно 20000, 15000 и 10000 руб. так как события А, В и С несовместны, то

Задача 2. На заочное отделение техникума поступают контрольные работы по математике из городов А, В и С . Вероятность поступления контрольной работы из города А равна 0,6, из города В - 0,1. Найти вероятность того, что очередная контрольная работа поступит из города С .

Мама мыла раму


Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – . Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В.Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы , но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (теорем-теорем!), пожалуйста, обратитесь к учебнику. Ну, а кто хочет научиться решать задачи по теории вероятностей и математической статистике в самые короткие сроки , следуйте за мной!

Для начала хватит =)

По мере прочтения статей целесообразно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике будут размещаться соответствующие pdf-ки с примерами решений. Также значительную помощь окажут ИДЗ 18.1 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

1) Суммой двух событий и называется событие которое состоит в том, что наступит или событие или событие или оба события одновременно. В том случае, если события несовместны , последний вариант отпадает, то есть может наступить или событие или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие состоит в том, что произойдёт хотя бы одно из событий , а если события несовместны то одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка .

Событие (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий , а именно:

– или будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.

То есть, событие включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий и называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

– на 1-й монете выпадет орёл;
– на 1-й монете выпадет решка;
– на 2-й монете выпадет орёл;
– на 2-й монете выпадет решка.

Тогда:
и на 2-й) выпадет орёл;
– событие состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет) . Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И , а сложение – ИЛИ . Таким образом, сумму легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл »

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания , когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

– в 1-м броске выпадет 4 очка;
– во 2-м броске выпадет 5 очков;
– в 3-м броске выпадет 6 очков.

Тогда событие состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)

Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =) Существует несколько подходов к её определению:

;
Геометрическое определение вероятности ;
Статистическое определение вероятности .

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения . Вероятность некоторого события обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:


Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий и их вероятностей в пользу следующей стилистики::

– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности :

Вероятностью наступления события в некотором испытании называют отношение , где:

– общее число всех равновозможных , элементарных исходов этого испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу , таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен . Событию благоприятствует исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться элементарных равновозможных исходов, образующих полную группу, а событию благоприятствует единственный исход (выпадение пятёрки). Поэтому: .ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы , и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие является невозможным , если – достоверным , а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

в единичном испытании маловозможное событие не произойдёт .

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна 0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта.

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице . Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

– в результате броска монеты выпадет орёл;
– в результате броска монеты выпадет решка.

По теореме:

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными . А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:
. Например, если – вероятность того, что стрелок попадёт в цель, то – вероятность того, что он промахнётся.

! В теории вероятностей буквы и нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют?
– Что такое случайность и равновозможность события?
– Как вы понимаете термины совместность/несовместность событий?
– Что такое полная группа событий, противоположные события?
– Что означает сложение и умножение событий?
– В чём суть классического определения вероятности?
– Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками

Теория вероятностей и математическая статистика

  • Агекян Т.А. Основы теории ошибок для астрономов и физиков (2-е изд.). М.: Наука, 1972 (djvu , 2.44 M)
  • Агекян Т.А. Теория вероятностей для астрономов и физиков. М.: Наука, 1974 (djvu , 2.59 M)
  • Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976 (djvu , 14 M)
  • Бакельман И.Я. Вернер А.Л. Кантор Б.Е. Введение в дифференциальную геометрию "в целом". М.: Наука, 1973 (djvu , 5.71 M)
  • Бернштейн С.Н. Теория вероятностей. М.-Л.: ГИ, 1927 (djvu , 4.51 M)
  • Биллингсли П. Сходимость вероятностных мер. М.: Наука, 1977 (djvu , 3.96 M)
  • Бокс Дж. Дженкинс Г. Анализ временных рядов: прогноз и управление. Выпуск 1. М.: Мир, 1974 (djvu , 3.38 M)
  • Бокс Дж. Дженкинс Г. Анализ временных рядов: прогноз и управление. Выпуск 2. М.: Мир, 1974 (djvu , 1.72 M)
  • Борель Э. Вероятность и достоверность. М.: Наука, 1969 (djvu , 1.19 M)
  • Ван дер Варден Б.Л. Математическая статистика. М.: ИЛ, 1960 (djvu , 6.90 M)
  • Вапник В.Н. Восстановление зависимостей по эмпирическим данным. М.: Наука, 1979 (djvu , 6.18 M)
  • Вентцель Е.С. Введение в исследование операций. М.: Советское радио, 1964 (djvu , 8.43 M)
  • Вентцель Е.С. Элементы теории игр (2-е изд.). Серия: Популярные лекции по математике. Выпуск 32. М.: Наука, 1961 (djvu , 648 K)
  • Венцтель Е.С. Теория вероятностей (4-е изд.). М.: Наука, 1969 (djvu , 8.05 M)
  • Венцтель Е.С., Овчаров Л.А. Теория вероятностей. Задачи и упражнения. М.: Наука, 1969 (djvu , 7.71 M)
  • Виленкин Н.Я., Потапов В.Г. Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики. М.: Просвещение, 1979 (djvu , 1.12 M)
  • Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике (3-е изд.). М.: Высш. шк., 1979 (djvu , 4.24 M)
  • Гмурман В.Е. Теория вероятностей и математическая статистика (4-е изд.). М.: Высшая школа, 1972 (djvu , 3.75 M)
  • Гнеденко Б.В., Колмогоров А.Н. Предельные распределения для сумм независимых случайных величин. М.-Л.: ГИТТЛ, 1949 (djvu , 6.26 M)
  • Гнеденко Б.В., Хинчин А.Я. Элементарное введение в теорию вероятностей (7-е изд.). М.: Наука, 1970 (djvu , 2.48 M)
  • Дуб Дж.Л. Вероятностные процессы. М.: ИЛ, 1956 (djvu , 8.48 M)
  • Дэйвид Г. Порядковые статистики. М.: Наука, 1979 (djvu , 2.87 M)
  • Ибрагимов И.А., Линник Ю.В. Независимые и стационарно связанные величины. М.: Наука, 1965 (djvu , 6.05 M)
  • Идье В., Драйард Д., Джеймс Ф., Рус М., Садуле Б. Статистические методы в экспериментальной физике. М.: Атомиздат, 1976 (djvu , 5.95 M)
  • Камалов М.К. Распределение квадратичных форм в выборках из нормальной совокупности. Ташкент: АН УзССР, 1958 (djvu , 6.29 M)
  • Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений. М.: Наука, 1970 (djvu , 867 K)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu , 3.67 M)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu , 1.50 M)
  • Кац М. Статистическая независимость в теории вероятностей, анализе и теории чисел. М.: ИЛ, 1963 (djvu , 964 K)
  • Кендалл М., Моран П. Геометрические вероятности. М.: Наука, 1972 (djvu , 1.40 M)
  • Кендалл М., Стюарт А. Том 2. Статистические выводы и связи. М.: Наука, 1973 (djvu , 10 M)
  • Кендалл М., Стюарт А. Том 3. Многомерный статистический анализ и временные ряды. М.: Наука, 1976 (djvu , 7.96 M)
  • Кендалл М., Стюарт А. Том. 1. Теория распределений. М.: Наука, 1965 (djvu , 6.02 M)
  • Колмогоров А.Н. Основные понятия теории вероятностей (2-е изд.) М.: Наука, 1974 (djvu , 2.14 M)
  • Колчин В.Ф., Севастьянов Б.А., Чистяков В.П. Случайные размещения. М.: Наука, 1976 (djvu , 2.96 M)
  • Крамер Г. Математические методы статистики (2-е изд.). М.: Мир, 1976 (djvu , 9.63 M)
  • Леман Э. Проверка статистических гипотез. М.: Наука. 1979 (djvu , 5.18 M)
  • Линник Ю.В., Островский И.В. Разложения случайных величин и векторов. М.: Наука, 1972 (djvu , 4.86 M)
  • Лихолетов И.И., Мацкевич И.П. Руководство к решению задач по высшей математике, теории вероятностей и математической статистике (2-е изд.). Мн.: Выш. школа, 1969 (djvu , 4.99 M)
  • Лоэв М. Теория вероятностей. М.: ИЛ, 1962 (djvu , 7.38 M)
  • Малахов А.Н. Кумулянтный анализ случайных негауссовых процессов и их преобразований. М.: Сов. радио, 1978 (djvu , 6.72 M)
  • Мешалкин Л.Д. Сборник задач по теории вероятностей. М.: МГУ, 1963 (djvu , 1 004 K)
  • Митропольский А.К. Теория моментов. М.-Л.: ГИКСЛ, 1933 (djvu , 4.49 M)
  • Митропольский А.К. Техника статистических вычислений (2-е изд.). М.: Наука, 1971 (djvu , 8.35 M)
  • Мостеллер Ф., Рурке Р., Томас Дж. Вероятность. М.: Мир, 1969 (djvu , 4.82 M)
  • Налимов В.В. Применение математической статистики при анализе вещества. М.: ГИФМЛ, 1960 (djvu , 4.11 M)
  • Невё Ж. Математические основы теории вероятностей. М.: Мир, 1969 (djvu , 3.62 M)
  • Престон К. Математика. Новое в зарубежной науке No.7. Гиббсовские состояния на счетных множествах. М.: Мир, 1977 (djvu , 2.15 M)
  • Савельев Л.Я. Элементарная теория вероятностей. Часть 1. Новосибирск: НГУ, 2005 (

Математика включает целое множество областей, одной из которых, наряду с алгеброй и геометрией, является теория вероятности. Существуют термины, являющиеся общими для всех этих направлений, но, помимо них, есть и специфические, свойственные только одной конкретной «нише» слова, формулы, теоремы.

Словосочетание «теория вероятности» вызывает у неподготовленного студента панику. Действительно, воображение рисует картины, где фигурируют страшные объемные формулы, а решение одной задачи занимает целую тетрадь. Однако на практике всё вовсе не так ужасно: достаточно один раз понять смысл некоторых терминов и вникнуть в суть несколько своеобразной логики рассуждений, чтобы перестать бояться заданий раз и навсегда. В связи с этим мы рассмотрим основные понятия теории вероятностей и математической статистики - молодой, но крайне интересной области знаний.

Для чего учить понятия

Функция языка - передавать информацию от одного человека к другому так, чтобы он её понял, осознал и смог использовать. Каждое математическое понятие можно объяснить простыми словами, но в этом случае акт обмена данными занимал бы значительно больше времени. Представьте, что вместо слова «гипотенуза» вам всегда бы пришлось говорить «самая длинная сторона прямоугольного треугольника» - это крайне неудобно и долго.

Потому люди и придумывают новые термины для тех или иных явлений, процессов. Основные понятия теории вероятностей - событие, вероятность события и т. д. - появились точно так же. А значит, чтобы использовать формулы, решать задачи и применять навыки в жизни, необходимо не просто запомнить новые слова, но и понять, что означает каждое из них. Чем более глубоко вы осознаете их, вникаете в смысл, тем шире становятся рамки ваших возможностей, и тем полнее вы воспринимаете окружающий мир.

В чем смысл предмета

Познакомимся с основными понятиями теории вероятностей. Классическое определение вероятности звучит следующим образом: это отношение устраивающих исследователя исходов к общему числу возможных. Приведем простой пример: когда человек бросает кубик, тот может выпасть любой из шести сторон кверху. Таким образом, общее число исходов - шесть. Вероятность же того, что выпадет случайно выбранная сторона - 1/6.

Умение предсказывать появление того или иного результата является крайне важным для самых разных специалистов. Сколько бракованных деталей ожидается в партии? От этого зависит, сколько нужно произвести. Какова вероятность, что лекарство поможет побороть болезнь? Такая информация и вовсе является жизненно важной. Но не будем тратить время на дополнительные примеры и приступим к изучению новой для нас области.

Первое знакомство

Рассмотрим основные понятия теории вероятности и их использование. В праве, естественных науках, экономике представленные ниже формулы и термины используются повсеместно, поскольку имеют непосредственное отношение в статистике и погрешности измерений. Более подробное изучение этого вопроса откроет вам и новые формулы, полезные для более точных и сложных вычислений, однако начнем с простого.

Одним из самых базовых и основных понятий теории вероятностей и математической статистики является случайное событие. Объясним понятными словами: из всех возможных исходов эксперимента в результате наблюдается лишь один. Даже если вероятность наступления этого события значительно выше, чем другого, оно будет случайным, так как теоретически итог мог быть и иным.

Если мы провели серию экспериментов и получили некоторое количество исходов, то вероятность каждого из них рассчитывается по формуле: P(A) = m/n. Здесь m - это то, сколько раз в серии испытаний мы наблюдали появление интересующего нас результата. В свою очередь n - это общее количество проведенных экспериментов. Если мы бросили монетку 10 раз и 5 раз получили «решку», то m=5, а n=10.

Виды событий

Случается, что некоторый исход гарантированно наблюдается в каждом испытании - такое событие будет называться достоверным. Если оно не будет происходить никогда, то будет называться невозможным. Впрочем, такие события не используются в условиях задач по теории вероятности. Основные понятия, которые знать гораздо важнее - это совместные и несовместные события.

Случается, что при проведении эксперимента одновременно происходит сразу два события. Например, мы бросаем два кубика - в данном случае то, что на одном выпало «шесть», не гарантирует того, что на втором не выпадет другая цифра. Такие события будут называться совместными.

Если мы кидаем один кубик, то две цифры одновременно выпасть не смогут никогда. В данном случае исходы в виде выпавшей «единицы», «двойки» и т. д. будут рассматриваться как несовместные события. Очень важно различать, какие исходы имеют место в каждом конкретном случае - от этого зависит, какие формулы применять в задаче на нахождение вероятностей. Основные понятия теории вероятностей мы продолжим изучать спустя несколько абзацев, когда рассмотрим особенности сложения и умножения. Ведь без них ни одну задачу решить не удастся.

Сумма и произведение

Допустим, вы с другом бросаете кубик, и у него выпало «четыре». Вам, чтобы победить, необходимо получить «пять» или «шесть». В этом случае вероятности будут суммироваться: поскольку шансы выпадения обоих чисел равны 1/6, ответ будет выглядеть как 1/6 + 1/6 = 1/3.

А теперь представьте, что вы бросаете кубик по два раза, и ваш друг получил 11 очков. Теперь вам необходимо, чтобы два раза подряд выпало «шесть». События независимы друг от друга, поэтому вероятности понадобится перемножить: 1/6 * 1/6 = 1/36.

Среди основных понятий и теорем теории вероятностей следует обратить внимание на сумму вероятностей совместных событий, т. е. тех, которые могут происходить одновременно. Формула сложения в этом случае будет выглядеть так: P(A+B) = P(A) + P(B) - P(AB).

Комбинаторика

Очень часто нам требуется найти все возможные сочетания некоторых параметров объекта или вычислить количество каких-либо комбинаций (например, при подборе шифра). В этом нам поможет комбинаторика, теснейшим образом связанная с теорией вероятности. Основные понятия здесь включают некоторые новые слова, а ряд формул из этой темы вам наверняка пригодится.

Допустим, у вас есть три цифры: 1, 2, 3. Вам надо, используя их, написать все возможные трёхзначные числа. Сколько их будет? Ответ: n! (восклицательный знак означает факториал). Комбинации из некоторого количества разных элементов (цифр, букв и проч.), отличающиеся только порядком их расположения, называются перестановками.

Однако гораздо чаще мы сталкиваемся с такой ситуаций: имеется 10 цифр (от нуля до девяти), из которых составляется пароль или код. Предположим, его длина - 4 символа. Как рассчитать общее количество возможных кодов? Для этого существует специальная формула: (n!)/(n - m)!

Учитывая предложенное выше условие задачи, n=10, m=4. Далее требуются только простые математические расчёты. Кстати, называться такие комбинации будут размещением.

Наконец, существует понятие сочетаний - это последовательности, отличающиеся друг от друга хотя бы одним элементом. Высчитывается их число по формуле: (n!) / (m!(n-m)!).

Математическое ожидание

Важным понятием, с которым сталкивается студент уже на первых занятиях по предмету, является математическое ожидание. Оно представляет собой сумму всех возможных результирующих значений, помноженных на их вероятности. По сути, это среднее число, которое мы можем предсказать в качестве результата испытания. Например, есть три значения, для которых в скобках указаны вероятности: 0 (0,2); 1 (0,5); 2 (0,3). Посчитаем математическое ожидание: M(X) = 0*0,2 + 1*0,5 + 2*0,3 = 1,1. Таким образом, из предложенного выражения можно увидеть, что данная величина является постоянной и не зависит от исхода испытания.

Это понятие используется во многих формулах, и вы неоднократно с ним столкнетесь в дальнейшем. Работать с ним несложно: математическое ожидание суммы равно сумме мат. ожиданий - M(X+Y) = M(X) + M(Y). То же касается и произведения: M(XY) = M(X) * M(Y).

Дисперсия

Должно быть, со школьного курса физики вы помните, что дисперсия - это рассеяние. Каково её место среди основных понятий теории вероятностей?

Посмотрите на два примера. В одном случае нам дано: 10(0,2); 20(0,6); 30(0,2). В другом - 0(0,2); 20(0,6); 40(0,2). Математическое ожидание в обоих случаях будет одинаковое, как же тогда сравнивать эти ситуации? Ведь мы видим невооруженным глазом, что разброс значений во втором случае значительно больше.

Для этого и было введено понятие дисперсии. Чтобы получить её, необходимо рассчитать математическое ожидание от суммы разностей каждой случайной величины и математического ожидания. Возьмём числа из первого примера, записанного в предыдущем абзаце.

Сперва рассчитаем математическое ожидание: M(X) = 10*0,2 + 20*0,6 + 30*0,2 = 20. Тогда значение дисперсии: D(X) = 40.

Ещё одним из основных понятий статистики и теории вероятности является среднее квадратичное отклонение. Рассчитать его очень просто: нужно лишь взять корень квадратный из дисперсии.

Здесь же можно отметить такой простой термин, как размах. Это значение, обозначающее разницу между максимальным и минимальным значением в выборке.

Статистика

Некоторые базовые школьные понятия используются в науке очень часто. Двумя из них являются среднее арифметическое и медиана. Наверняка вы помните, как найти их значения. Но на всякий случай напомним: среднее арифметическое - это сумма всех значений, деленная на их количество. Если значений 10, то мы их складываем и делим на 10.

Медиана - это центральное значение в ряду всех возможных. Если мы имеем нечетное количество величин, то мы выписываем их в порядке возрастания и выбираем то, которое оказалось в середине. Если же у нас четное число значений, мы берем два центральных и делим на два.

Ещё два значения, располагающиеся между медианой и двумя крайними - максимальным и минимальным - значениями множества, именуются квартилями. Вычисляются они таким же образом - при нечетном количестве элементов берется число, располагающееся в середине ряда, а при четном - половина суммы двух центральных элементов.

Существует и специальный график, на котором можно увидеть все значения выборки, её размах, медиану, межквартальный интервал, а также выбросы - значения, не укладывающиеся в статистическую погрешность. Получающееся изображение носит весьма специфическое (и даже нематематическое) название - «ящик с усами».

Распределение

Распределение также относится к основным понятиям теории вероятности и математической статистики. Кратко говоря, оно представляет собой обобщенную информацию обо всех случайных величинах, которые мы можем увидеть в результате испытания. Главным параметром здесь будет вероятность появления каждого конкретного значения.

Нормальное распределение - это такое, которое имеет один центральный пик, в котором находится величина, встречающееся наиболее часто. От него дугами расходятся всё менее и менее вероятные исходы. В целом график со стороны похож на «горку». В дальнейшем вы узнаете, что с данным видом распределения теснейшим образом связана основополагающая для теории вероятности центральная предельная теорема. В ней описываются важные для рассматриваемого нами ответвления математики закономерности, очень полезные при разнообразных расчётах.

Но вернемся к теме. Существует ещё два вида распределений: ассиметричное и мультимодальное. Первое выглядит как половинка «нормального» графика, т. е. дуга спускается лишь в одну сторону от пиковой величины. Наконец, мультимодальное распределение - это такое, у которого существует несколько «верхних» значений. График, таким образом, то опускается, то поднимается. Наиболее частотное значение в любом распределении называется модой. Это также одно из основных понятий теории вероятностей и математической статистики.

Гауссово распределение

Гауссово, или нормальное, распределение - такое, в котором отклонение наблюдений от среднего подчиняется определенному закону.

Кратко говоря, основной разброс значений выборки экспоненциально стремится к моде - самому частотному из них. Ещё говорить точнее, то 99,6 % всех величин располагается в пределах трёх стандартных отклонений (помните, мы рассматривали это понятие выше?).

Гауссово распределение - одно из основных понятий теории вероятности. При помощи него можно понять, входит ли элемент по тем или иным параметрам в разряд «типичных» - так оценивается рост и вес человека в соответствии с возрастом, уровень интеллектуального развития, психологическое состояние и многое другое.

Как применить

Интересно, что «скучные» математические данные можно использовать с пользой для себя. Например, один молодой человек применил теорию вероятности и статистику, чтобы выиграть в рулетку несколько миллионов долларов. Правда, перед этим пришлось подготовиться - в течение нескольких месяцев записывать результаты игр в различных казино.

После проведения анализа он выяснил, что один из столов незначительно наклонен, а значит, ряд значений появляется статистически значимо чаще других. Немного расчётов, терпения - и вот владельцы заведения ломают головы, думая, как человеку может так повезти.

Есть целое множество повседневных бытовых задач, которые невозможно решить без обращения к статистике. Например, как определить, сколько магазину заказывать одежды разных размеров: S, M, L, XL? Для этого необходимо проанализировать, кто чаще покупает одежду в городе, в районе, в близлежащих магазинах. Если такую информацию не получить, владелец рискует потерять много денег.

Заключение

Мы рассмотрели целое множество основных понятий теории вероятностей: испытание, событие, перестановки и размещения, математическое ожидание и дисперсия, мода и нормальное распределение… Кроме того, мы рассмотрели ряд формул, на изучение которых в высшем учебном заведении отводится больше месяца занятий.

Не забывайте: математика необходима при изучении экономики, естественных наук, информационных технологий, инженерных специальностей. Статистику как одну из её областей здесь также нельзя обходить стороной.

Теперь дело за малым: практикуйтесь, решайте задачи и примеры. Даже основные понятия и определения теории вероятности забудутся, если не уделять время повторению. Кроме того, последующие формулы в значительной степени будут опираться на те, которые были нами рассмотрены. Поэтому постарайтесь их запомнить, тем более что их не так и много.

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие теории вероятности, научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.