Рефераты Изложения История

Основы классической теории электропроводности металлов. Классическая электронная теория электропроводности металлов и ее опытные обоснования

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Согласно теории Друде-Лоренца носителями тока в металлах являются свободные электроны, что объясняет высокую электропроводность металлов. Ионы в процессе протекания тока через металл участия не принимают. Если бы это было так, то протекание тока через металл сопровождалось переносом вещества. В действительности этого не наблюдается (опыт Рикке).

Основные положения классической электронной теории металлов следующие :

1. Металлы имеют кристаллическую решётку, в узлах которой находятся положительные ионы (рис.14.1). Эти ионы не могут перемещаться по кристаллу, а испытывают лишь небольшие колебания около своих положений равновесия.

2. Между узлами кристаллической решётки движутся свободные электроны, называемые электронами проводимости .

3. При наличии внешнего электрического поля Е на хаотическое движение свободных электронов накладывается их упорядоченное (направленное) движение – так называемый дрейф электронов в определённом направлении.

4. Электроны проводимости при своём движении сталкиваются с ионами решётки, столкновения между электронами проводимости не учитывается.

5. Внешнее поле не влияет на концентрацию носителей тока и среднее время их свободного пробега.

§ 14.2 Закон Ома и Джоуля-Ленца в классической электронной теории

Согласно закону равномерного распределения энергии по степеням свободы, на один электрон приходится средняя кинетическая энергия теплового движения

(k - постоянная Больцмана, Т – температура (на каждую степень свободы приходится энергия, равная , электрон рассматривается как материальная точка; следовательно, свободный электрон обладает тремя степенями свободы)).

При тепловом движении электроны испытывают соударения.

Путь, проходимый электронами между двумя последовательными соударениями, называют длиной свободного пробега <ℓ> (рис.14.2).

Предположим, что при каждом соударении электрон полностью передаёт свою энергию ионам решётки и начальная скорость последующего движения электрона равна нулю.

Если по проводнику течёт постоянный ток, то внутри проводника существует электрическое поле, напряжённостью Е . На каждый электрон со стороны электрического поля действует сила F =eE , где е – заряд электрона. Под действием этой силы электрон приобретает ускорение а , которое можно определить из равенства m e a =еЕ, откуда

(14.1)

(m e - масса электрона).

Если < t > – среднее время между двумя последовательными соударениями, то к концу свободного пробега электрон приобретает скорость

(14.2)

Средняя скорость упорядоченного движения электронов

(14.3)

(начальная скорость считается равной нулю, поэтому движение равноускоренное).

Среднее время между двумя последовательными соударениями можно определит, если знать длину свободного пробега и среднюю скорость теплового движения < υ τ > :

(14.4)

Вообще,
, но соотношение (14.4) справедливо, так как уже было показано, что

Подставив <ℓ> из (3.99) в формулу (3.98), получим

(14.5)

Подставив в формулу j = ne< υ > (13.37) , получим

(14.6)

(14. 7)

- удельная проводимость материала проводника (величина, обратная его удельному сопротивлению)).

    Единица удельной проводимости – сименс на метр (См/м)

Из выражения (3.101), представляющего закон Ома, следует: плотность тока пропорциональна напряжённости электрического поля, что совпадает с (3.81).

Из формулы (3.101) легко получить закон Ома в виде
, для этого её правую и левую части надо умножить наS – площадь поперечного сечения проводника. Учитывая, что
, получаем
, но
, а
(поле внутри проводника длиной ℓ считаем однородным); следовательно,

(14.8)

Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь . Правда в отличие от молекул газа, пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению: . При включении поля на хаотическое тепловое движение, происходящее, со скоростью , накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :

(18.1)

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм 2 = 10 7 А/м 2 . Взяв для n=10 29 м -3 , получим

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристалличе­ской решетки металла. Это представление о природе носителей тока в металлах осно­вывается на электронной теории проводи­мости металлов, созданной немецким фи­зиком П. Друде (1863-1906) и разрабо­танной впоследствии нидерландским фи­зиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов - опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu, Аl, Сu) одинакового ради­уса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5 10 6 Кл), ни­каких, даже микроскопических, следов пе­реноса вещества не обнаружилось. Это явилось экспериментальным доказательст­вом того, что ионы в металлах не участву­ют в переносе электричества, а перенос заряда в металлах осуществляется части­цами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856-1940) электроны. Для доказательства этого предполо­жения необходимо было определить знак и величину удельного заряда но­сителей (отношение заряда носителя к его массе). Идея подобных опытов за­ключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы дол­жны по инерции смещаться вперед, как

смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно опреде­лить знак носителей тока, а зная размеры и сопротивление проводника, можно вы­числить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат советским физи­кам С. Л. Мандельштаму (1879-1944) и Н. Д. Папалекси (1880-1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881 -1948) и ранее шотландским физиком Б. Стюартом (1828-1887). Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно оди­наков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удель­ного заряда и массы носителей тока и электронов, движущихся в вакууме, со­впадали. Таким образом, было оконча­тельно доказано, что носителями электри­ческого тока в металлах являются свобод­ные электроны.



Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристалличе­ской решетки металла (в результате сбли­жения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от ато­мов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решет­ки, в результате чего устанавливается тер-

модинамическое равновесие между элек­тронным газом и решеткой. По теории Друде - Лоренца, электроны обладают такой же энергией теплового движения, как и мо­лекулы одноатомного газа. Поэтому, при­меняя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1 10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возник­новению тока.

При наложении внешнего электриче­ского поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Сред­нюю скорость упорядоченного движе­ния электронов можно оценить согласно формуле (96.1) для плотности тока: j=ne. Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концентрации носителей тока n =8 10 28 м -3 средняя скорость (v) упорядоченного движения электронов равна 7,8 10 -4 м/с. Следова­тельно, << , т. е. даже при очень больших плотностях тока средняя ско­рость упорядоченного движения электро­нов, обусловливающего электрический ток, значительно меньше их скорости теплово­го движения. Поэтому при вычислениях результирующую скорость ( +) можно заменять скоростью теплового дви­жения .

Казалось бы, полученный результат противоречит факту практически мгновен­ной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (с =3 10 8 м/с). Через время t=l/c (l - длина цепи) вдоль цепи установится стационарное электри­ческое поле и в ней начнется упорядо­ченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыка­нием.

Атом состоит из ядра, окруженного облаком электронов, которые находятся в движении на некотором расстоянии от ядра в пределах слоев (оболочек), определяемых их энергией. Чем дальше от ядра находится вращающийся электрон, тем выше его энергетический уровень. Свободные атомы имеют дискретный энергетический спектр. При переходе электрона с одного разрешенного уровня на другой, более отдаленный, происходит поглощение энергии, а при обратном переходе - ее выделение. Поглощение и выделение энергии может происходить только строго определенными порциями - квантами. На каждом энергетическом уровне может находиться не более двух электронов. Расстояние между энергетическими уровнями уменьшается с увеличением энергии. «Потолком» энергетического спектра является уровень ионизации, на котором электрон приобретает энергию, позволяющую ему стать свободным и покинуть атом.

Если рассматривать структуру атомов различных элементов, то можно выделить оболочки, которые полностью заполнены электронами (внутренние), и незаполненные оболочки (внешние). Последние слабее связаны с ядром, легче вступают во взаимодействие с другими атомами. Поэтому электроны, расположенные на внешней недостроенной оболочке, называют валентными.

При образовании молекул между отдельными атомами действуют различные типы связей. Для полупроводников наиболее распространенными являются ковалентные связи, образующиеся за счет обобществления валентных электронов соседних атомов. Например, в германии, атом которого имеет четыре валентных электрона, в молекулах возникают ковалентные связи между четырьмя соседними атомами (рис. 2.1, а).

Рис. 2.1. Структура связей атома германия в кристаллической решетке (а) и условные обозначения запрещенных и разрешенных (б)

Если атомы находятся в связанном состоянии, то на валентные электроны действуют поля электронов и ядер соседних атомов, в результате чего каждый отдельный разрешенный энергетический уровень атома расщепляется на ряд новых энергетических уровней, энергии которых близки друг к другу. На каждом из этих уровней могут также находиться только два электрона. Совокупность уровней, на каждом из которых могут находиться электроны, называют разрешенной зоной на рис. . Промежутки между разрешенными зонами носят название запрещенных зон (2 на рис. ). Нижние энергетические уровни атомов обычно не образуют зон, так как внутренние электронные оболочки в твердом теле слабо взаимодействуют с соседними атомами, будучи как бы «экранированы» внешними оболочками. В энергетическом спектре твердого тела можно выделить три вида зон: разрешенные (полностью заполненные) зоны, запрещенные зоны и зоны проводимости.

Разрешенная зона характеризуется тем, что все уровни ее при температуре 0 К заполнены электронами. Верхнюю заполненную зону называют валентной.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Зона проводимости характеризуется тем, что электроны, находящиеся в ней, обладают энергиями, позволяющими им освобождаться от связи с атомами и передвигаться внутри твердого тела, например, под воздействием электрического поля.

Разделение веществ на металлы, полупроводники и диэлектрики выполняют исходя из зонной структуры тела при температуре абсолютного нуля.

У металлов валентная зона и зона проводимости взаимно перекрываются, поэтому при О К металл обладает электропроводностью.

У полупроводников и диэлектриков зона проводимости при 0 К пуста и электропроводность отсутствует. Различия между ними чисто количественные - в ширине запрещенной зоны АЭ. У наиболее распространенных полупроводников (у полупроводников, на основе которых в будущем надеются создать высокотемпературные приборы, ). у диэлектриков .

В полупроводниках при некотором значении температуры, отличном от нуля, часть электронов будет иметь энергию, достаточную для перехода в зону проводимости. Эти электроны становятся свободными, а полупроводник - электропроводным.

Уход электрона из валентной зоны приводит к образованию в ней незаполненного энергетического уровня. Вакантное энергетическое состояние носит название дырки.

Валентные электроны соседних атомов в присутствии электрического поля могут переходить на эти свободные уровни, создавая дырки в другом месте. Такое перемещение электронов можно рассматривать как движение положительно заряженных фиктивных зарядов - дырок.

Электропроводность, обусловленную движением свободных электронов, называют электронной, а электропроводность, обусловленную движением дырок, - дырочной.

У абсолютно чистого и однородного полупроводника при температуре, отличной от О К, свободные электроны и дырки образуются попарно, т. е. число электронов равно числу дырок. Электропроводность такого полупроводника (собственного), обусловленная парными носителями теплового происхождения, называется собственной.

Процесс образования пары электрон-дырка называют генерацией пары. При этом генерация пары может быть следствием не только воздействия тепловой энергии (тепловая генерация), но и кинетической энергии движущихся частиц (ударная генерация), энергии электрического поля, энергии светового облучения (световая генерация) и т. д.

Образовавшиеся в результате разрыва валентной связи электрон и дырка совершают хаотическое движение в объеме полупроводника до тех пор, пока электрон не будет «захвачен» дыркой, а энергетический уровень дырки не будет «занят» электроном из зоны проводимости. При этом разорванные валентные связи восстанавливаются, а носители заряда - электрон и дырка - исчезают. Этот процесс восстановления разорванных валентных связей называют рекомбинацией.

Промежуток времени, прошедший с момента генерации частицы, являющейся носителем заряда, до ее рекомбинации называют временем жизни, а расстояние, пройденное частицей за время жизни, - диффузионной длиной. Так как время жизни каждого из носителей заряда различно, то для однозначной характеристики полупроводника под временем жизни чаще всего понимают среднее (среднестатистическое) время жизни носителей заряда, а под диффузионной длиной - среднее расстояние, которое проходит носитель заряда за среднее время жизни. Диффузионная длина и время жизни электронов и дырок связаны между собой соотношениями

где - диффузионная длина электронов и дырок; - время жизни электронов и дырок; - коэффициенты диффузии электронов и дырок (плотности потоков носителей заряда при единичном градиенте их концентраций).

Среднее время жизни носителей заряда численно определяется как промежуток времени, в течение которого концентрация носителей заряда, введенных тем или иным способом в полупроводник, уменьшается в раз ().

Если в полупроводнике создать электрическое поле напряженностью Е, то хаотическое движение носителей заряда упорядочится, т. е. дырки и электроны начнут двигаться во взаимно противоположных направлениях, причем дырки - в направлении, совпадающем с направлением электрического поля. Возникнут два встречно направленных потока носителей заряда, создающих токи, плотности которых равны

где q - заряд носителя заряда (электрона); - число электронов и дырок в единице объема вещества; , - подвижность носителей заряда.

Подвижность носителей заряда есть физическая величина, характеризуемая их средней направленной скоростью в электрическом поле с напряженностью , где v - средняя скорость носителя.

Так как носители заряда противоположного знака движутся в противоположном направлении, то результирующая плотность тока в полупроводнике

Движение носителей заряда в полупроводнике, вызванное наличием электрического поля и градиента потенциала, называют дрейфом, а созданный этими зарядами ток - дрейфовым током.

Движение под влиянием градиента концентрации называют диффузией.

Удельную проводимость полупроводника а можно найти как отношение удельной плотности тока к напряженности электрического поля:

где - удельное сопротивление полупроводника.