Рефераты Изложения История

Как решать двойные квадратные неравенства. Как решать квадратные неравенства

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое "квадратное неравенство"? Не вопрос!) Если взять любое квадратное уравнение и заменить в нём знак "=" (равно) на любой значок неравенства (> ≥ < ≤ ≠ ), получится квадратное неравенство. Например:

1. x 2 -8x+12 0

2. -x 2 +3x > 0

3. x 2 4

Ну, вы поняли...)

Я не зря здесь связал уравнения и неравенства. Дело в том, что первый шаг в решении любого квадратного неравенства - решить уравнение, из которого это неравенство сделано. По этой причине - неспособность решать квадратные уравнения автоматически приводит к полному провалу и в неравенствах. Намёк понятен?) Если что, посмотрите, как решать любые квадратные уравнения. Там всё подробно расписано. А в этом уроке мы займёмся именно неравенствами.

Готовое для решения неравенство имеет вид: слева - квадратный трёхчлен ax 2 +bx+c , справа - ноль. Знак неравенства может быть абсолютно любой. Первые два примера здесь уже готовы к решению. Третий пример надо ещё подготовить.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


В этой статье собран материал, покрывающий тему «решение квадратных неравенств ». Сначала показано, что представляют собой квадратные неравенства с одной переменной, дан их общий вид. А дальше детально разобрано как решать квадратные неравенства. Показаны основные подходы к решению: графический способ, метод интервалов и путем выделение квадрата двучлена в левой части неравенства. Приведены решения характерных примеров.

Навигация по странице.

Что такое квадратное неравенство?

Естественно, прежде чем говорить о решении квадратных неравенств, надо отчетливо понимать, что такое квадратное неравенство. Иными словами, нужно по виду записи уметь отличать квадратные неравенства от неравенств других видов.

Определение.

Квадратное неравенство – это неравенство вида a·x 2 +b·x+c<0 (вместо знака > может быть любой другой знак неравенства ≤, >, ≥), где a , b и c – некоторые числа, причем a≠0 , а x – переменная (переменная может быть обозначена и любой другой буквой).

Сразу дадим еще одно название квадратных неравенств – неравенства второй степени . Это название объясняется тем, что в левой части неравенств a·x 2 +b·x+c<0 находится второй степени - квадратный трехчлен. Термин «неравенства второй степени» используется в учебниках алгебры Ю. Н. Макарычева, а Мордкович А. Г. придерживается названия «квадратные неравенства».

Также иногда можно слышать, что квадратные неравенства называют квадратичными неравенствами. Это не совсем корректно: определение «квадратичные» относится к функциям, заданным уравнениями вида y=a·x 2 +b·x+c . Итак, есть квадратные неравенства и квадратичные функции , но не квадратичные неравенства.

Покажем несколько примеров квадратных неравенств: 5·x 2 −3·x+1>0 , здесь a=5 , b=−3 и c=1 ; −2,2·z 2 −0,5·z−11≤0 , коэффициенты этого квадратного неравенства есть a=−2,2 , b=−0,5 и c=−11 ; , в этом случае .

Обратите внимание, что в определении квадратного неравенства коэффициент a при x 2 считается отличным от нуля. Это и понятно, равенство коэффициента a нулю фактически «уберет» квадрат, и мы будем иметь дело с линейным неравенством вида b·x+c>0 без квадрата переменной. А вот коэффициенты b и c могут быть равными нулю, причем как по отдельности, так и одновременно. Вот примеры таких квадратных неравенств: x 2 −5≥0 , здесь коэффициент b при переменной x равен нулю; −3·x 2 −0,6·x<0 , здесь c=0 ; наконец, в квадратном неравенстве вида 5·z 2 >0 и b , и c равны нулю.

Как решать квадратные неравенства?

Теперь можно озадачиться вопросом как решать квадратные неравенства. В основном для решения используются три основных метода:

  • графический способ (или, как у А. Г. Мордковича, функционально-графический),
  • метод интервалов,
  • и решение квадратных неравенств через выделение квадрата двучлена в левой части.

Графическим способом

Сразу оговоримся, что метод решения квадратных неравенств, к рассмотрению которого мы приступаем, в школьных учебниках алгебры не называют графическим. Однако по сути это он и есть. Более того, первое знакомство с графическим способом решения неравенств обычно и начинается тогда, когда встает вопрос, как решать квадратные неравенства.

Графический способ решения квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥) заключается в анализе графика квадратичной функции y=a·x 2 +b·x+c для нахождения промежутков, в которых указанная функция принимает отрицательные, положительные, неположительные или неотрицательные значения. Эти промежутки и составляют решения квадратных неравенств a·x 2 +b·x+c<0 , a·x 2 +b·x+c>0 , a·x 2 +b·x+c≤0 и a·x 2 +b·x+c≥0 соответственно.

Методом интервалов

Для решения квадратных неравенств с одной переменной помимо графического метода достаточно удобен метод интервалов , который сам по себе очень универсален, и подходит для решения различных неравенств, а не только квадратных. Его теоретическая сторона лежит за пределами курса алгебры 8, 9 классов, когда учатся решать квадратные неравенства. Поэтому здесь мы не будем вдаваться в теоретическое обоснование метода интервалов, а сосредоточимся на том, как с его помощью решаются именно квадратные неравенства.

Суть метода интервалов, по отношению к решению квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥), состоит в определении знаков, которые имеют значения квадратного трехчлена a·x 2 +b·x+c на промежутках, на которые разбивается координатная ось нулями этого трехчлена (при их наличии). Промежутки со знаками минус составляют решения квадратного неравенства a·x 2 +b·x+c<0 , со знаками плюс – неравенства a·x 2 +b·x+c>0 , а при решении нестрогих неравенств к указанным промежуткам добавляются точки, отвечающие нулям трехчлена.

Познакомиться со всеми деталями этого метода, его алгоритмом, правилами расстановки знаков на промежутках и рассмотреть готовые решения типовых примеров с приведенными иллюстрациями Вы можете, обратившись к материалу статьи решение квадратных неравенств методом интервалов .

Путем выделения квадрата двучлена

Кроме графического метода и метода интервалов существуют и другие подходы, позволяющие решать квадратные неравенства. И мы подошли к одному из них, в основе которого лежит выделение квадрата двучлена в левой части квадратного неравенства.

Принцип этого способа решения квадратных неравенств состоит в выполнении равносильных преобразований неравенства , позволяющих перейти к решению равносильного неравенства вида (x−p) 2 , ≥), где p и q – некоторые числа.

А как осуществляется переход к неравенству (x−p) 2 , ≥) и как его решить разъясняет материал статьи решение квадратных неравенств путем выделения квадрата двучлена . Там же представлены примеры решения квадратных неравенств этим способом и даны необходимые графические иллюстрации.

Неравенства, сводящиеся к квадратным

На практике очень часто приходится сталкиваться с неравенствами, приводящимися с помощью равносильных преобразований к квадратным неравенствам вида a·x 2 +b·x+c<0 (знаки, естественно, могут быть и другими). Их можно назвать неравенствами, сводящимися к квадратным неравенствам.

Начнем с примеров самых простых неравенств, которые сводятся к квадратным. Иногда, чтобы перейти к квадратному неравенству, достаточно переставить в данном неравенстве слагаемые или перенести их из одной части в другую. Например, если перенести все слагаемые из правой части неравенства 5≤2·x−3·x 2 в левую, то получим квадратное неравенство в оговоренном выше виде 3·x 2 −2·x+5≤0 . Еще пример: переставив в левой части неравенства 5+0,6·x 2 −x<0 слагаемые по убыванию степени переменной, придем к равносильному квадратному неравенству в привычной форме 0,6·x 2 −x+5<0 .

В школе на уроках алгебры, когда учатся решать квадратные неравенства, одновременно разбираются и с решением рациональных неравенств , сводящихся к квадратным. Их решение предполагает перенос всех слагаемых в левую часть с последующим преобразованием образовавшегося там выражения к виду a·x 2 +b·x+c путем выполнения . Рассмотрим пример.

Пример.

Найдите множество решений неравенства 3·(x−1)·(x+1)<(x−2) 2 +x 2 +5 .иррациональное неравенство равносильно квадратному неравенству x 2 −6·x−9<0 , а логарифмическое неравенство – неравенству x 2 +x−2≥0 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Общий вид квадратного неравенства после переноса всех выражений на одну сторону неравенства представляет собой одну из следующих форм:

$ax^2+bx+c > 0$ , либо $ax^2+bx+c \geq 0$ либо $ax^2+bx+c

Когда $a \neq 0$ , а также $b, c \in \mathbb{R}$

Решением каждого неравенства указанного выше, является нахождение всех действительных чисел, которыми можно заменить $x$ так, чтобы неравенство было верным.

Например, если мы заявляем, что $x = 1$ является одним из корней неравенства $x^2 - \frac{1}{2} > 0$. Подставив 1 вместо всех переменных $x$ в неравенстве, мы получим, что $1^2 - \frac{1}{2} > 0 \rightarrow \frac{1}{2} > 0$ ,
что всегда верно. Поэтому $x = 1$ является одним из решений данного неравенства.

Теперь мы научимся решать неравенства (1).

Во-первых, мы рассмотрим уравнение с двумя переменными, $y = ax^2+bx+c$, и предположим, что $ax^2+bx+c$ равно нулю. Тогда:

$ax^2+bx+c = 0 \rightarrow a(x^2+\frac{b}{a}x+\frac{c}{a}) = 0 \rightarrow^{a \neq 0} x^2+\frac{b}{a}x+\frac{c}{a} = 0 \rightarrow$
$x^2+\frac{b}{a}x+\frac{c}{a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2} = 0 \rightarrow (x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} = 0 \rightarrow$
$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \rightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \rightarrow x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow $
$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Из этого следует, что график квадратного уравнения пересекает ось x в точке $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ и $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Эти нули разделяют числовую прямую на три интервала:

$(-\infty, x_1)$ , $$ , $(x_2,+\infty)$,

допуская, что $x_1

Теперь пусть $\Delta = b^2 - 4ac$.

Мы можем рассмотреть три указанных ниже случая:

  1. $\Delta > 0$
  2. $\Delta = 0$
  3. $\Delta

Случай 1: Если $\Delta > 0$,

Тогда $ax^2+bx+c$ имеет два различных корня $(x_1 \neq x_2)$.
Теперь, если $a>0$, то его график получается таким, как на "Рисунке а" .
Если $a "Рисунке b". Поэтому, если $a>0$ и, если имеем $ax^2+bx+c \geq 0 (ax^2+bx+c > 0)$, то тогда множество решений это:
$(-\infty, x_1] \cup $ $((x_1,x_2))$
С другой стороны, если $a 0)$, тогда множество решений это:
$$ $((x_1,x_2))$
А если имеем $ax^2+bx+c \leq 0 (ax^2+bx+c $(-\infty, x_1] \cup \cup ∪ [ 1 + 3 4 , + ∞) или x ≤ 1 - 3 4 , x ≥ 1 + 3 4 .

Пример 3

Выполните решение квадратного неравенства - 1 7 · x 2 + 2 · x - 7 < 0 методом интервалов.

Решение

Для начала найдем корни квадратного трехчлена из левой части неравенства:

D " = 1 2 - - 1 7 · - 7 = 0 x 0 = - 1 - 1 7 x 0 = 7

Это строгое неравенство, поэтому на графике используем «пустую» точку. С координатой 7 .

Теперь нам нужно определить знаки на полученных промежутках (− ∞ , 7) и (7 , + ∞) . Так как дискриминант квадратного трехчлена равен нулю, а старший коэффициент отрицательный, то мы проставляем знаки − , − :

Так как мы решаем неравенство со знаком < , то изображаем штриховку над интервалами со знаками минус:

В данном случае решениями являются оба промежутка (− ∞ , 7) , (7 , + ∞) .

Ответ: (− ∞ , 7) ∪ (7 , + ∞) или в другой записи x ≠ 7 .

Пример 4

Имеет ли квадратное неравенство x 2 + x + 7 < 0 решения?

Решение

Найдем корни квадратного трехчлена из левой части неравенства. Для этого найдем дискриминант: D = 1 2 − 4 · 1 · 7 = 1 − 28 = − 27 . Дискриминант меньше нуля, значит, действительных корней нет.

Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.

Определим знак значений квадратного трехчлена. При D < 0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак + :

Штриховку мы могли бы нанести в данном случае над промежутками со знаком « - ». Но таких промежутков у нас нет. Следовательно, чертеж сохраняет вот такой вид:

В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.

Ответ: Нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter