Рефераты Изложения История

У растений и грибов выделительная система. Грибы

Несмотря на то, что грибы по своему происхождению непосредственно примыкают к простейшим существам и стоят на более низкой ступени развития по сравнению с животными и растительными организмами, все же в пределах вида эволюция проявилась в достаточно широкой мере. Жизнь низшего организма ограничена во времени и несложна по своим функциям. Она поддерживается благодаря способности вида быстро и неограниченно размножаться, сохраняя количественное превосходство. Это довольно примитивный способ самозащиты, не требующий какого-то самосовершенствования. По мере усложнения организма, естественно, что индивидуальная жизнь приобретает все большую ценность. Такой курс эволюции и привел грибы к их теперешнему состоянию. У стоящих на нижней ступени развития одна клетка выполняет все функции, напрягая все усилия на размножение. Но постепенно начинается деление на вегетативные части (грибница) и на органы размножения. Затем происходит деление вегетативных органов. В дальнейшем идет развитие различных стадий грибницы, предназначенных для определенных целей (покоящиеся стадии) и усложнение плодовых тел в целях лучшего их предохранения как органов размножения от вредных воздействий внешней среды. Все это, наконец, в конечном итоге приводит к образованию грибных тканей, физиологически приспособленных к определенным функциям и потому отличающихся рядом признаков. Происхождение грибных тканей может быть двояким: первый случай, нормальный, присущий всем грибным организмам, - это развитие из гифы. Гифы, переплетаясь, образуют пучки, которые дают развитие шнуровой ткани. Второй способ - это образование клубочков. В каком-нибудь месте на своем протяжении гифа дает большее или меньшее количество боковых ветвей, которые сплетаются в клубок (как, например, при образовании склероция). При срастании гиф или при образовании клубочков получается более-менее плотная ткань. Такая ткань у грибов по характеру выполнения функций делится на несколько типов. Покровная, или защитная, ткань Она служит для защиты всех остальных тканей от внешних воздействий и является одной из наиболее резко выраженных у грибов. Состоит из ярко-окрашенных, плотно переплетенных гиф. Покровная ткань хорошо развита на верхней поверхности шляпочных грибов, таких как, например, сыроежек или мухомора, она выглядит пленкой, легко отделяющейся от шляпки, наподобие эпидермы листа растений. Оболочка ризоморф или склероциев, состоящая из одного или нескольких слоев омертвелых клеток, тоже характерный пример покровной ткани. Очень часто покровные части представляются весьма плотными с одеревеневшими клетками с утолщенной оболочкой, как то можно увидеть у некоторых трутовиков. Поверхность покровной ткани может быть гладкой и голой, покрытой различными образованиями. У трюфелей, например, наблюдаются бугорки или бородавки, у рыжиков - студенистый налет, у чешуйчатки - сети чешуек, у ряда видов - сплетение волосков, образующих сплошной войлочный покров. Органы питания Грибы «принимают пищу» исключительно в форме раствора, проникающего в грибную клетку через оболочку. Питательный раствор поглощается всей поверхностью грибницы, находящейся с ним в соприкосновении. Нередко случается так, что грибница распределяется как внутри субстрата, так и на его поверхности (воздушная грибница). Функция питания выпадает на долю той части грибницы, которая находится внутри субстрата, в непосредственном контакте с питательными соками. Однако никакого ущемления «прав» воздушной грибницы в данном случае не происходит, и она исправно получает свой «паек», а при прикрытии ее субстратом также станет хорошо усваивать растворы, как и погруженные с самого начала части. Когда мы говорим о всасывающей ткани, имеются в виду только деятельные части вегетативных органов, то есть нормальная грибница. Что же касается покоящихся стадий, то у них всасывающая способность не проявляется и при пробуждении в жизнь дальнейшее развитие протекает за счет накопленных у них питательных веществ в форме белков и особенно жиров. Проводящая ткань Как правило, специальной проводящей ткани у грибов не существует, и питательные соки у большинства видов распределяются всасыванием или через соединительные отверстия смежных клеток по всем вегетативным и репродуктивным тканям. Проводящая способность грибных гиф очень велика, и соки циркулируют в них без задержки. Например, у белого гриба, у подосиновика питательные вещества переносятся внутриклеточной жидкостью при температуре 20°С за 1 час на 10-12 см. Такая скорость зависит от повышенного испарения и очень скоро надает при повышении влажности воздуха, при котором испарение снижается. Иногда у некоторых видов можно выявить более сложное и целесообразное устройство, состоящее из сплетения гиф и предназначенное для возможно быстрого и обильного переноса, главным образом, воды. Такая специальная организация проводящей ткани, напоминающая собой систему сосудистых пучков у высших растений, присуща, например, домовому грибу, который вызывает разрушение древесины в постройках не только нижних этажей, где количество влаги вполне обеспечено, но также в верхних этажах. Гриб использует все закоулки данного здания благодаря разветвленной сети шнуроподобных гиф. Гифы способны проводить воду в избытке на какое угодно расстояние и поднимаются в постройках из подвалов до крыш, даже по косякам дверей и окон, отчасти по стенам, всюду пронося с собой воду. Запасные ткани Эти ткани играют существенную роль у грибов. Они обеспечивают их беспрепятственное дальнейшее развитие при прекращении питания извне. Здесь необходимо отметить, что речь идет не столько о специальных тканях, сколько о частях организма, в которых сосредотачиваются запасные материалы для своевременного использования. Основными запасными элементами грибов являются жировые вещества в виде масел и углеводов, заменяющих собой крахмал (широко распространенный у растений). Кроме того, используется и гликоген, который характерен как запасное вещество в животных организмах. Грибы, как и животные, вполне могут его синтезировать. Во всех органах грибов, мобилизованных исполнять обязанности запасных тканей, можно находить тот или иной из названных элементов, либо все вместе. Классическим примером запасной ткани могут служить споры, если трактовать этот термин в данном случае в широком значении этого слова. Споры физиологически заменяют семена высших растений и подобно им должны быть снабжены запасными веществами. Разложение этих веществ на питательные продукты обеспечивает начальный период роста гифы, происходящей из споры. Если рассмотреть спору под микроскопом, то всегда можно обнаружить в ней некоторое количество масла в виде преломляющих свет шаровидных капель. Не менее типичными запасными элементами являются покоящиеся стадии грибницы-склероции. Запасную ткань в них представляет сердцевина, а клетки оболочки составляют покровную защитную ткань. К запасной ткани можно также отнести сумки у сумчатых грибов. При образовании в них спор, они оказываются заполненными гликогеном. Гликоген используется созревающими спорами и после их готовности исчезает из сумок, будучи полностью употребленным. Механическая ткань Под этим названием подразумевается та часть или части организма, которые придают ему необходимую прочность и фиксируют его форму. У высших растений механическая ткань складывается из клеток с утолщенными стенками, так называемых склеренхимных клеток. Эти клетки располагаются не как попало, а по определенной закономерности в целях достижения наибольшего результата при наименьшей затрате материала. Склеренхимноподобные клетки с утолщенной оболочкой можно встретить в шнурах домового гриба. Наибольшего развития механическая ткань достигает в плодовых телах высших грибов. Причем у одних видов склеренхимное строение ножки приводит к одеревенению ткани, как, например, у гриба подаксиса пестичного, распространенного в сухих степях. В других случаях не всегда можно наблюдать утолщение клеточных стенок в ножке. Необходимое сопротивление излому достигается за счет волокнистого строения параллельно расположенных гиф, естественно более устойчивых в горизонтальном, чем в продольном направлении, в котором они легко расщепляются. Само собой разумеется, что сопротивление будет находиться в зависимости от диаметра ножки, и мы видим, что при подобном строении ножки бывают очень толстыми, как, например, у подосиновика или у белого гриба. Это вызывает необходимость расточительного пользования органическим веществом. Однако нередко встречается более экономичный и целесообразный тип построения ножки - в виде полой трубочки. Принцип здесь тот же, что и применяемый в механике при постройке мостов или других сооружений из полых металлических частей. В этом случае затраты органического вещества малы, а между тем сопротивление излому довольно велико в силу определенной эластичности, что не требует чрезмерного утолщения клеточных стенок. Наличие пустой полости в ножке характерно для многих шляпочных грибов. Оригинальное приспособление механической ткани бывает у видов, основное распространение спор которых ориентировано на насекомых. Задача, следовательно, состоит в том, чтобы облегчить насекомым доступ к спороносному слою плодового тела, издающего во время созревания трупных запах, что, как известно, является приманкой для некоторых видов насекомых. Плодовое тело представляется в виде яйца, находящегося на поверхности почвы или в ее верхних слоях. Ко времени созревания верхняя часть оболочки лопается и из нее сравнительно быстро выступает удлиненная ножка в 10-25 см длиной, на вершине которой располагается спороносная ткань. На удлинение ножки требуется около 36 часов, после чего начинается постепенное ослизнение шляпки и происходит разложение плодового тела. В этом процессе главную роль играет не столько рост гиф, сколько их необыкновенная растяжимость. Выделительная, или выводная, ткань Она довольно широко распространена у грибов. Гифы многих видов выделяют на своей поверхности смолистые вещества, кристаллы щавелевокислой извести. Плотный сплошной налет извести наблюдается на протяжении гиф грибницы шампиньона. Выделение извести зависит от индивидуальных особенностей, а также от условий питания, но, как правило, оно имеет место преимущественно в молодом возрасте, что объясняется более деятельным обменом веществ. Грибы имеют фактически настоящие выводные, или выделительные, ткани, которые в достаточной степени разделены. Прежде всего, следует остановиться на млечных сосудах, присущих, например рыжику. Рассматривая внимательно плодовое тело рыжика, нетрудно заметить, что ткани ножки и шляпки не однородны, а довольно резко отличаются. Основная масса состоит из тонких цилиндрических гиф, образующих у периферии сплошной слой. В середине шляпки и ножки в эту основную ткань вклиниваются скопления клеток с утолщенными стенками. На разрезе они образуют овальные или округлые островки в виде розетки, в центре которой располагается тонкая гифа, заполненная водянистым содержимым. В нитчатой ткани, на границе с утолщенными клетками, и находятся млечные сосуды. У них более значительные размеры, они имеют растяжимые стенки, часто сплетающиеся в букву Н. Сосуды пронизывают все плодовое тело. Содержимое млечного сока составляет сложный химический комплекс из красящих веществ (пигментов), из смол и жиров. Встречаются также белки, гликоген. Окраска сока бывает различной - красная, молочно-белая, зеленая, иногда изменяющаяся в присутствии воздуха от окисления. Ассимиляционная ткань У грибов она отсутствует, так как, не обладая хлорофиллом, они не в состоянии ассимилировать углекислоту из воздуха. Поскольку у грибов не имеется ни устьиц, ни воздушных камер, столь характерных для высших растений, то не приходится говорить и о наличии каких-либо специальных дыхательных грибных тканей. Но, тем не менее, даже в самых плотных тканях, какими являются склероции и ризоморфы, всегда имеются промежутки, через которые внутренние ткани входят в непосредственное соприкосновение с окружающим воздухом, проникающим свободно между сплетениями гиф. Процесс дыхания, то есть поглощения кислорода и выделения углекислоты, производится всей поверхностью живой гифы. Как можно видеть из вышеприведенного изложения, функции грибных тканей не так резко разграничены, как-то имеет место у высших растений, у которых такое деление пошло дальше. Часто одни и те же гифы исполняют несколько функций, что обусловливает большую гибкость грибов в приспособлении к условиям окружающей среды.

Разведение грибов на дачном участке, в квартире, в гараже.

Конечными продуктами расщепления жиров и углеводов являются вода и углекислый газ. При распаде белков, кроме того, выделяется еще и аммиак. В печени аммиак превращается в мочевину. Все эти вещества попадают в кровь и переносятся к почкам илегким , через которые и происходит их удаление из организма.

В выведении продуктов обмена принимает участие и кожа : удаляется часть углекислого газа; потовые железы кожи выводят воду, соли, около 1% мочевины. Вкишечник из секретируются желчные пигменты и соли тяжелых металлов.

Главной системой, отвечающей за выведение продуктов метаболизма, является мочевыделительная система. Почки выполняет ряд функций: удаляют ненужные продукты обмена (аммиак, мочевину);выводят из организма "чужеродные" вещества (ядовитые вещества, всосавшиеся в кишечнике, лекарственные препараты);регулируют водно-солевой обмен иpH крови;синтезируют биологически активные вещества , регулирующие кроветворение и кровяное давление,выводят избыток глюкозы из организма.

Выделительная система представлена почками, мочеточниками, мочевым пузырем, мочеиспускательным каналом.

Почки на задней стенке брюшной полости, правая ниже левой на 1 - 1,5 см. Покрыты фиброзной капсулой , в области ворот (место входа в почку сосудов и мочеточника) и на задней стенкежировая ткань .

Расположены почки в задней части брюшной полости (рис. 218), правая ниже левой на 1-1,5 см, так как над ней находится печень.

Рис. 218. Расположение органов выделения

Рис. 219. Строение почки:

1 - почечная артерия; 2 - почечная вена; 3 - мочеточник; 4 - корковое вещество; 5 - пирамидки мозгового вещества; 6 - почечная лоханка.

Рис. 220. Микроскопическое строение почки:

1 - фиброзная капсула; 2 - жировая ткань; 3 - корковый слой; 4 - мозговой слой; 5 - сосочек; 6 - малая чашка.

В почке (рис. 219) снаружи расположено корковое вещество толщиной около 4 мм, содержащее почечные тельца нефронов, под ниммозговое вещество , образующее пирамидки, верхушки которых называются сосочками (в среднем 12).

В сосочках собирательные трубочки открываются в малые чашки (8-9 штук), затем вторичная моча попадает в двебольшие чашки и затем в полость - почечную лоханку (рис. 220).

Кровь попадает в почки из брюшной аорты через почечную артерию , очищенная выводится черезпочечную вену в нижнюю полую вену.

Основной структурной и функциональной единицей почки является нефрон , в почке около 1 млн. нефронов. В нефроне различают капсулу Боумена-Шумлянского, в которой находится капиллярный клубочек. Капсула продолжается в извитой каналец, впадающий через собирательную трубочку в почечную лоханку (рис. 221).За сутки вся кровь проходит через почки около 300 раз.

В капиллярном клубочке (мальпигиевом тельце) высокое кровяное давление, так как приносящая артериола клубочка почти в два раза больше по диаметру, чем выносящая . Выносящая артериола вновь разветвляется, оплетая капиллярами извитой каналец, затем венозные капилляры собираются в почечную вену.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

3 слайд

Описание слайда:

У растений и грибов нет специальной выделительной системы. Многие ненужные для них вещества откладываются в клетках многоклеточных вместилищах и сохраняются на протяжении всей их жизни. От многих вредных веществ растения освобождаются во время листопада. Листопад принадлежит к числу наиболее характерных явлений осенней природы. Он ярче всего выражает сезонную периодичность в развитии растительного мира наших широт. Каждый год повторяется он, радуя вначале наш глаз бесчисленным количеством тонов и красок, в которые наряжается лес, а затем наводя невольную грусть унылым видом обнажившихся деревьев и меланхолическим шорохом опавшей листвы. Осень издавна считается скучной порой, мертвым сезоном в природе. Поэты сравнивают ее со старостью, грустят об ее приближении. Для натуралиста осень - интереснейшее время в году, пора интенсивных исследований и наблюдений, когда ярче всего выявляются многочисленные приспособления животного и растительного мира к условиям неблагоприятного сезона. В это время многое удается подметить в природе, объяснить многое непонятное. Многие проявления весенней природы без соответствующих осенних наблюдений будут казаться нам загадочными. Весна и осень неразрывно связаны между собою - это отдельные стадии единого жизненного цикла природы наших умеренных широт.

4 слайд

Описание слайда:

2. Что содержится в опавших листьях. Анализы опавших листьев показали, что в них содержится, кроме известного процента золы, значительное количество углеводов - органических веществ, содержащих углерод и выработанных лиcтом в результате поглощения им углекислоты из воздуха. Замечательно при этом, что опавшие листья значительно богаче углеводами, чем молодые. Таким образом, растение, ежегодно сбрасывая листву, лишается известного количества питательных веществ, которые не успевают полностью перейти в стебель. Однако подобная расточительность не приносит растению особого вреда. Углеводы - это вещества, которые в любом количестве могут быть получены растением из воздуха. Азот растение усваивает только из почвы в виде растворенных солей. И азота нередко растению не хватает. Поэтому оказывается, что азотистые вещества перед листопадом в значительных количествах передвигаются в ствол, где и перезимовывают или потребляются растением в течение зимы; вместе с азотистыми веществами из листьев выводятся и другие ценные для растения минеральные соли; тем не менее установлено, что значительная часть их все же остается в опадающих листьях. В листьях накапливаются ненужные и даже вредные вещества. Они удаляются из растений в процессе сбрасывания листьев. Опавшие листья представляют собой очень ценное удобрение. Благодаря им почва в лесу ежегодно обогащается перегноем, приобретая ряд важных свойств. Мы знаем, например, что почва широколиственного леса не промерзает зимой в силу значительного содержания гумуса и это дает возможность весенним растениям развиваться под снегом. Один гектар дубового леса получает более 5000 кг отпада (сухой вес листьев, хвороста и пр.), что дает примерно 520 кг золы.

5 слайд

Описание слайда:

Листопад – это естественное отделение листьев от стебля. В листьях накапливаются ненужные и даже вредные вещества. Они удаляются из растения в процессе сбрасывания листьев.

6 слайд

Описание слайда:

Они очень широко распространены среди растений, формы их очень разнообразны, а физиологически между ними различают два главных типа: в одних (каковы вышеописанные) выделение воды есть простой акт фильтрации ее из проводящих тканей в силу переполнения их; в других случаях в акте выделения активно участвуют живые клетки гидатоды; если их убить (местным отравлением сулемою), то растение лишается способности к выделению. Продукт выделения на самом деле не есть чистая вода, но обыкновенно содержание в нем твердых веществ очень ничтожно, 0,004-0,05%. В некоторых случаях, однако, с водою выделяются довольно значительные количества углекислой извести ("известковые железки"); по испарении воды последняя образует на листе чешуйки или корочки. Так бывает у многих камнеломковых (Saxifragaceae) и у некоторых папоротников (виды Polypodium, Nephrolepis). Выделение воды в виде капель наблюдается и у низших растений - у грибов (Merolius lacrymans, Mucor, Pilobolus и др.).

7 слайд

Описание слайда:

Процессы, которые сопровождают листопад: В листьях разрушается хлорофилл. Лист меняет цвет. Лист накапливает ненужные вещества. Лист становится бурым. Лист отрывается. Лист падает.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Гидатоды Настоящий дождь можно наблюдать и ранним утром в поле, когда на многих растениях можно видеть капли воды по краям листа или на пластинке. Часто эти капли увеличиваются в объеме и падают на землю, после чего на том же месте выступает новая капля и т. д. Стало быть, это не роса, а растение выделяет избыток воды, накопившийся в нем в течение ночи. Искусственно такое выделение воды можно вызвать во всякое время, если сильно ослабить испарение, поместив растение в замкнутый и насыщенный водяными парами приемник. Вода выделяется при посредстве особых приспособлений или органов растения, называемых эмиссариями (Молль) или гидатодами (Габерландт). Это - потовые железы растения. На приложенном рис. изображена такая гидатода в разрезе.

10 слайд

Описание слайда:

Некоторые растения от избытка воды и солей освобождаются через специальные, похожие на устьица группы клеток – водяные устьица, или гидатоды. Обычно они располагаются на верхушке и по краям листа. Выделяемые ими капли (росу) можно видеть на листьях утром в жаркую погоду.

11 слайд

Описание слайда:

Процессы выделения веществ выполняют разнообразные функции. Например, от повреждений и микроорганизмов клетки защищают клеточные стенки, которые образуются из выделяемых полисахаридов и других веществ, слизистые полисахаридные чехлы на поверхности корневых волосков, восковые выделения на поверхности листьев, летучие фитонциды. Выделение нектаров способствует опылению растений насекомыми и ловле добычи насекомоядными растениями. Выделение веществ может быть пассивным и активным. Пассивное выделение по градиенту концентрации называется экскрецией, активное выведение веществ с затратой энергии – секрецией.

12 слайд

Описание слайда:

У растений различают три типа секреции. 1. Мерокриновая может быть двух разновидностей: а. Эккриновая (мономолекулярная) через мембраны, которая осуществляется переносчиками или ионными насосами, б. Гранулокриновая – выделение веществ в везикулах (мембранных пузырьках, секрет которых освобождается наружу при взаимодействии везикул с плазмалеммой или переходит в вакуоль. Везикулы образуются в аппарате Гольджи. 4. Апокриновая – когда вместе с секретом выделяется часть цитоплазмы, например, вместе с отрывом головок у солевых волосков галофитов. 5. Голокриновая – когда вся клетка превращается в секрет, например, секреция слизи клетками корневого чехлика.

13 слайд

Описание слайда:

Процесс секреции у растений осуществляется специализированными клетками и тканями. К наружным секреторным структурам относятся железистые волоски (трихомы), железки, нектарники, осмофоры (железки, расположенные в цветках и вырабатывающие эфирные масла, от которых зависит аромат цветков) и гидатоды. Примером внутренних секреторных структур могут быть идиобласты – одиночные клетки, служащие для отложения каких-либо веществ. Кроме того, к секреции способна каждая растительная клетка, формирующая свою клеточную стенку.

14 слайд

Описание слайда:

Железистые волоски: 1, 2, 3 - листового черешка пеларгонии (Pelargonlum zonale); 4, 5 - листовой пластинки черной смородины (Ribes nigrum); 1 и 2 - секрет (эфирное масло), вырабатываемый верхней клеткой волоска, приподнял кутикулу; 3 - эфирное масло выступило после разрыва кутикулы наружу;4 и 5 - волоски, секрет которых был удален спиртом.

15 слайд

Описание слайда:

Секреторными называются ткани, выделяющие некие вещества. Они весьма разнообразны. Железистые волоски служат для выведения ненужных веществ из организма растения, иногда для защиты (вспомните, например, крапиву). Рис. 5. Нектарники служат для выделений сахаристой жидкости. Нектар служит средством привлечения опылителей. Также секреторной тканью выделяются эфирные масла (ими пахнут многие цветы и пряные растения) и млечный сок.

16 слайд

Описание слайда:

Нектарники – это особые железки, расположенные в цветке, которые выделяют нектар – сахаристую жидкость. Нектар состоит из глюкозы, фруктозы, сахарозы, а также витаминов, белков, аминокислот и других органических и неорганических веществ в зависимости от вида растения; он является основным компонентом меда и пищей многих видов насекомых, некоторых видов птиц и животных, а также участвует в репродуктивных процессах самого цветка. Нектарники могут располагаться в разных частях цветка – на лепестках, тычинках, у основания завязи, на цветоложе, цветочной трубке или (реже) на чашелистиках. Цветки, выделяющие большое количество нектара, который используют пчелы для производства меда, считаются медоносными растениями.

17 слайд

Описание слайда:

18 слайд

Описание слайда:

19 слайд

Описание слайда:

Фитонциды были открыты Б. П. Токиным ещё в 1928-1929 годах, когда он обнаружил, что раненные растения выделяют летучие вещества, убивающие микроорганизмы на расстоянии. Фитонциды – один из факторов естественного иммунитета растений, как высших, так и низших. Они обладают бактерицидными, фунгицидными и протистоцидными свойствами. Фитонциды могут также стимулировать жизнедеятельность тех или иных микроорганизмов, являющихся антагонистами патогенных для данного вида высших растений форм, что может играть роль иммунитета. Фитонциды – один из факторов жизни биоценозов, обуславливающих антагонизм в мире микроорганизмов, стимуляцию и угнетение размножения, роста и других проявлений жизни у высших растений. Фитонциды – один из многих факторов, влияющий на состав микрофлоры воздуха в условиях разных растительных ассоциаций, регулирующих состав животных организмов в биогеоценозах. Они токсичны для некоторых насекомых, клещей, травоядных и других животных; при определённых условиях они, вероятно, могут оказаться мутагенными факторами.

20 слайд

Описание слайда:

Фитонциды продуцируются неповреждёнными и механически раненными тканями, а также возникают в ответ на инфицирование. Выделение фитонцидов различными органами одного и того же растения неодинаково. Близкородственные виды растений, различные сорта одного и того же вида обладают разными фитонцидными свойствами. В зависимость от времени года и периода развития растение также обладает разными фитонцидными свойствами. Механизм действия летучих фитонцидов заключается в том, что они вызывают разнообразные изменения микробной клетки: подавляют дыхание, растворяют и разрушают поверхностные слои и составные части протоплазмы (ферменты и др.). Очень важно, что микробы при длительном контакте с летучими выделениями растений не вырабатывают к ним устойчивости.

21 слайд

Описание слайда:

У растений различается период максимального выделения летучих веществ. У кипариса и лавра он наблюдается в фазу цветения, у сосны крымской и кедра – в фазе прекращения роста вегетативных органов, у сосны пицундской, алеппской и итальянской, можжевельника казацкого – в фазу активного роста. По максимальной величине выделения веществ в атмосферу растения распределяются следующим образом: сосна пицундская – 13,1 мг %/ч, можжевельник – 1,5, кедр – 1,2, сосна крымская – 0,9, алеппская – 0,8, итальянская – 0,5 и лавр – 0,2 мг%/ч. Выделяемые вещества представлены в основном терпеновыми соединениями.

22 слайд

Описание слайда:

Фитонциды полностью подавили рост колоний золотистого стафилококка и кишечной палочки у растений: ломоносы китайской, тангутской, прямой, виргинской, фиолетовый, маньчжурской, Жакмана, рябинника рябинолистного, черёмухи поздней, аронии сливолистной, винограда амурского, лиственницы Сукачева, пихты сибирской, спиреи Вангутта, тополя краснонервного, ореха грецкого, ели колючей голубой, ореха маньчжурского, карии белой и др. Процент снижения количества колоний воздушной микрофлоры у листьев черёмухи обыкновенной, тополей чёрного и китайского, каштана конского 18,3-32,7%; менее активны листья берёзы бородавчатой, клёна ясенелистного, робинии джеакации, бирючины обыкновенной, вишни войлочной (5,4-12,9%). В природных условиях опыт ставили в полиэтиленовых камерах, используя Escherichia coli, Proteus vulgaris, Bacillus subtilis. Фитонцидная активность учитывалась по степени задерживания роста культур на чашках с питательным агаром

23 слайд

Описание слайда:

Спектр действия многих водных и прибрежных растений на биологические объекты очень велик. Например, летучие выделения манника большого, манника трёхцветкового губительны более чем для 60-70 видов беспозвоночных и позвоночных животных. Очень опасны для многих организмов летучие фитонциды цикуты. Простейшие, низшие кишечнополостные, черви, например планарии, быстро погибают, распадаются на отдельные мелкие фрагменты с последующим зернистым распадом их тела, или их структуры фиксируются, или происходят исчезновение многих структур. Изучение фитонцидности ряда комнатно-оранжерейных растений показало, что сильными фитонцидными свойствами обладают алоэ древовидный, аспарагус Шпренгера, хлорофитум хохлатый, сансевьера большая, гавортия полосатая, аспарагус перистый, драцена Варнека, драцена Сандери. Во время цветения все исследовные растения показали большую фитонцидную активность по сравнению с другими фазами.

24 слайд

Описание слайда:

В Санкт-Петербургском ботаническом институте им. Комарова РАН установлено, что использование фитонцидных растений в закрытых помещениях приводит к снижению общего числа микробных клеток в воздухе в 250 раз по сравнению с помещением аналогичного назначения без растений (контроль). Размещение в стандартном помещении 5-10 растений одного или нескольких видов приводит к положительному психоэмоциональному состоянию пациентов, а для фиторекреации оздоровительного направления рекомендуется установить 120-150 растений в помещении размером 100-130 м3.

25 слайд

Описание слайда:

ЧЕСНОК Еще египетские фараоны приказывали своим рабам есть чеснок, чтобы те сохраняли больше сил при изнурительной работе. Воины Древней Греции и Рима потребляли с пищей много чеснока, полагая, что он придает храбрость и отвагу. Китайская медицина считала чеснок ценным лечебным средством при заболеваниях органов дыхания, пищеварения, при эпидемиях чумы и холеры. . При простудах, гриппе, ангинах хорошо помогают ингаляции паров чеснока. Можно также растертую кашицу из луковиц завернуть в небольшие кусочки марли и вкладывать на 10-15 минут в ноздри утром и вечером.

26 слайд

Описание слайда:

Л У К Репчатый лук издавна используется человеком как пищевое и лекарственное растение. Не всем известно, что в России насчитывается более 100 видов дикого лука, по вкусу и питательным свойствам не уступающих репчатому луку. Некоторые дикорастущие виды лука стали редкими и даже включены в Красную книгу. Но есть среди них и такие, запасы которых огромны и могут явиться подспорьем к нашему столу. К ним следует отнести лук победный, или черемшу. Сочные стебли черемши, появляющиеся уже в конце апреля, содержат витамина С в 10-15 раз больше, чем плоды лимона. Богаты они и фитонцидами, эфирными маслами, органическими кислотами.

27 слайд

Описание слайда:

ХРЕН столовый Листья и корни богаты витамином С и горчичным эфирным маслом, придающим хрену острый вкус. Корни хрена выделяют фитонциды. Корни трут на терке и используют как острую приправу. В народной медицине хрен - противоцинготное и противопростудное средство. Кашицу из корней используют для растираний при радикулите, водный настой - для полоскания горла при ангине.

28 слайд

Выделение — совокупность физиологических процессов, направленных на удаление из организма конечных продуктов обмена веществ (осуществляют почки, потовые железы, легкие, желудочно-кишечный тракт и др.).

Выделение (экскреция ) — процесс освобождения организма от конечных продуктов метаболизма, избытка воды, минеральных (макро- и микроэлементов), питательных, чужеродных и токсичных веществ и тепла. Выделение происходит в организме постоянно, что обеспечивает поддержание оптимального состава и физико-химических свойств его внутренней среды и прежде всего крови.

Конечными продуктами метаболизма (обмена веществ) являются углекислый газ, вода, азотсодержащие вещества (аммиак, мочевина, креатинин, мочевая кислота). Углекислый газ и вода образуются при окислении углеводов, жиров и белков и выделяются из организма в основном в свободном виде. Небольшая часть углекислого газа выделяется в виде бикарбонатов. Азотсодержащие продукты метаболизма образуются при распаде белков и нуклеиновых кислот. Аммиак образуется при окислении белков и удаляется из организма преимущественно в виде мочевины (25-35 г/сут) после соответствующих превращений в печени и солей аммония (0,3-1,2 г/сут). В мышцах при распаде креатинфосфата образуется креатин, который после дегидратации превращается в креатинин (до 1,5 г/сут) и в такой форме удаляется из организма. При распаде нуклеиновых кислот образуется мочевая кислота.

В процессе окисления питательных веществ всегда выделяется тепло, избыток которого необходимо отводить от места его образования в организме. Эти образующиеся в результате метаболических процессов вещества должны постоянно удаляться из организма, а избыток тепла рассеиваться во внешнюю среду.

Органы выделения человека

Процесс выделения имеет важное значение для гомеостаза, он обеспечивает освобождение организма от конечных продуктов обмена, которые уже не могут быть использованы, чужеродных и токсических веществ, а также избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в результате обмена веществ. Основное значение органов выделения состоит в поддержании постоянства состава и объема жидкости внутренней среды организма, прежде всего крови.

Органы выделения:

  • почки - удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена;
  • легкие — выводят углекислый газ, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении;
  • слюнные и желудочные железы — выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин) и чужеродных органических соединений;
  • поджелудочная железа и кишечные железы - экскретируют тяжелые металлы, лекарственные вещества;
  • кожа (потовые железы) - выделяют воду, соли, некоторые органические вещества, в частности мочевину, а при напряженной работе — молочную кислоту.

Общая характеристика системы выделения

Система выделения - это совокупность органов (почки, легкие, кожа, пищеварительный тракт) и механизмов регуляции, функцией которых является экскреция различных веществ и рассеяние избытка тепла из организма в окружающую среду.

Каждый из органов системы выделения играет ведущую роль в удалении тех или иных экскретируемых веществ и рассеянии тепла. Однако эффективность системы выделения достигается за счет их совместной работы, которая обеспечивается сложными регуляторными механизмами. При этом изменение функционального состояния одного из выделительных органов (вследствие его повреждения, заболевания, исчерпания резервов) сопровождается изменением выделительной функции других, входящих в целостную систему выделения организма. Например, при избыточном выведении воды через кожу при усиленном потоотделении в условиях действия высокой внешней температуры (летом или во время работы в горячих цехах на производстве) снижается образование мочи почками и ее выведение — уменьшается диурез. При уменьшении экскреции азотистых соединений с мочой (при заболеваниях почек) увеличивается их удаление через легкие, кожу, пищеварительный тракт. Это является причиной возникновения «уремического» запаха изо рта у больных тяжелыми формами острой или хронической почечной недостаточности.

Почки играют ведущую роль в экскреции азотсодержащих веществ, воды (в нормальных условиях более половины ее объема от суточного выделения), избытка большинства минеральных веществ (натрия, калия, фосфатов и др.), избытка питательных и чужеродных веществ.

Легкие обеспечивают удаление более 90% углекислого газа, образующегося в организме, паров воды, некоторых летучих веществ, попавших или образующихся в организме (алкоголь, эфир, хлороформ, газы автотранспорта и промышленных предприятий, ацетон, мочевина, продукты деградации сурфактанта). При нарушении функций почек усиливается выделение мочевины с секретом желез дыхательных путей, разложение которой приводит к образованию аммиака, что обусловливает появление специфического запаха из рта.

Железы пищеварительного тракта (включая слюнные железы) играют ведущую роль в выделении избытка кальция, билирубина, желчных кислот, холестерола и его производных. Они могут выделять соли тяжелых металлов, лекарственные вещества (морфин, хинин, салицилаты), чужеродные органические соединения (например, красители), небольшое количество воды (100-200 мл), мочевины и мочевой кислоты. Их выделительная функция усиливается при нагрузке организма избыточным количеством различных веществ, а также при заболеваниях почек. При этом значительно возрастает выведение продуктов обмена белков с секретами пищеварительных желез.

Кожа имеет ведущее значение в процессах отдачи организмом тепла в окружающую среду. В коже есть специальные органы выделения — потовые и сальные железы. Потовые железы играют важную роль в выделении воды, особенно в условиях жаркого климата и (или) интенсивной физической работы, в том числе в горячих цехах. Выделение воды с поверхности кожи колеблется от 0,5 л/сут в покое до 10 л/сут в жаркие дни. С потом выделяются также соли натрия, калия, кальция, мочевина (5-10% от общего выводимого из организма ее количества), мочевая кислота, около 2% углекислого газа. Сальные железы секретируют особое жировое вещество — кожное сало, которое выполняет защитную функцию. Оно состоит на 2/3 из воды и 1/3 из неомыляемых соединений — холестерола, сквалена, продуктов обмена половых гормонов, кортикостероидов и др.

Функции выделительной системы

Выделение — освобождение организма от конечных продуктов обмена, чужеродных веществ, вредных продуктов, токсинов, лекарственных веществ. В результате обмена веществ в организме образуются конечные продукты, которые не могут организмом дальше использоваться и поэтому должны удаляться из него. Часть этих продуктов является токсичными для органов выделения, поэтому в организме формируются механизмы, направленные на превращение этих вредных веществ либо в безвредные, либо менее вредные для организма. Например, аммиак, образующийся в процессе обмена белков, оказывает вредное воздействие на клетки почечного эпителия, поэтому в печени аммиак превращается в мочевину, которая не оказывает вредного действия на почки. Кроме того в печени происходит обезвреживание таких токсических веществ как фенол, индол и скатол. Эти вещества соединяются с серной и глюкуроновой кислотами, образуя менее токсичные вещества. Таким образом, процессам выделения предшествуют процессы так называемого защитного синтеза, т.е. превращение вредных веществ в безвредные.

К органам выделения относятся: почки, легкие, желудочно- кишечный тракт, потовые железы. Все эти органы выполняют следующие важные функции: удаление продуктов обмена; участие в поддержании постоянства внутренней среды организма.

Участие органов выделения в поддержании водно-солевого баланса

Функции воды: вода создает среду, в которой протекают все метаболические процессы; является частью структуры всех клеток организма (связанная вода).

Организм человека на 65-70% в целом состоит из воды. В частности у человека со средним весом 70 кг в организме находится около 45 л воды. Из этого количества 32 л составляет внутриклеточная вода, которая участвует в построении структуры клеток, а 13 л — внеклеточная вода, из которой 4,5 л составляет кровь и 8,5 л межклеточная жидкость. Человеческий организм постоянно теряет воду. Через почки выводится около 1,5 л воды, которая разводит токсические вещества, уменьшая их токсическое действие. С потом теряется около 0,5 л воды в сутки. Выдыхаемый воздух насыщен водяными парами и в таком виде удаляется 0,35 л. С конечными продуктами переваривания пищи удаляется около 0,15 л воды. Таким образом, в течение суток из организма удаляется около 2,5 л воды. Для сохранения водного баланса такое же количество должно поступать в организм: с продуктами питания и питьем в организм поступает около 2 л воды и 0,5 л воды образуется в организме в результате обмена веществ (обменная вода), т.е. приход воды равен 2,5 л.

Регуляция водного баланса. Ауторегуляция

Этот процесс запускается с отклонением константы содержания воды в организме. Количество воды в организме — жесткая константа, так как при недостаточном поступлении воды очень быстро наступает сдвиг рН и осмотического давления, что приводит к глубокому нарушению обмена вешеств в клетке. О нарушении водного баланса организма сигнализирует субъективное чувство жажды. Оно возникает при недостаточном поступлении воды в организм или при избыточном ее выделении (усиленное потоотделение, диспепсии, при избыточном поступлении минеральных солей, т.е. при повышении осмотического давления).

В различных участках сосудистого русла особенно в области гипоталамуса (в супраоптическом ядре) находятся специфические клетки — осморецепторы, содержащие вакуоль (пузырек), заполненную жидкостью. Эти клетки огибает капиллярный сосуд. При повышении осмотического давления крови в силу разности осмотического давления жидкость из вакуоли будет выходить в кровь. Выход воды из вакуоли приводит к ее сморщиванию, что вызывает возбуждение клеток осморецепторов. Кроме этого, возникает ощущение сухости слизистой оболочки полости рта и глотки, при этом раздражаются рецепторы слизистой оболочки, импульсы от которых так же поступают в гипоталамус и усиливают возбуждение группы ядер, называемых центром жажды. Нервные импульсы от них поступают в кору головного мозга и там формируется субъективное чувство жажды.

При увеличении осмотического давления крови начинают формироваться реакции, которые направлены на восстановление константы. Вначале используется резервная вода из всех водных депо, она начинает переходить в кровь, кроме того раздражение осморецепторов гипоталамуса стимулирует выделение АДГ. Он синтезируется в гипоталамусе, а депонируется в задней доле гипофиза. Выделение этого гормона приводит к уменьшению диуреза за счет увеличения обратного всасывания воды в почках (особенно в собирательных трубочках). Таким образом, организм освобождается от избытка солей при минимальных потерях воды. На основе субъективного ощущения жажды (мотивации жажды) формируются поведенческие реакции, направленные на поиск и прием воды, что приводит к быстрому возвращению константы осмотического давления к нормальному уровню. Так осуществляется процесс регуляции жесткой константы.

Водное насыщение осуществляется в две фазы:

  • фаза сенсорного насыщения, возникает при раздражении водой рецепторов слизистой оболочки полости рта и глотки, в кровь выходит депонированная вода;
  • фаза истинного или метаболического насыщения, возникает в результате всасывания принятой воды в тонкой кишке и поступления ее в кровь.

Выделительная функция различных органов и систем

Выделительная функция пищеварительного тракта сводится не только к удалению непереваренных остатков пищи. Например, у больных нефритом удаляются азотистые шлаки. При нарушении тканевого дыхания недоокисленные продукты сложных органических веществ также появляются в слюне. При отравлениях у больных с симптомами уремии наблюдается гиперсаливация (усиленное слюноотделение), которую в определенной степени можно рассматривать как дополнительный выделительный механизм.

Через слизистую оболочку желудка выделяются некоторые красители (метиленовый синий или конгорот), что используется для диагностики заболеваний желудка при одновременной гастроскопии. Кроме того, через слизистую желудка удаляются соли тяжелых металлов, лекарственные вещества.

Поджелудочная железа и кишечные железы так же экскретируют соли тяжелых металлов, пурины и лекарственные вещества.

Выделительная функция легких

С выдыхаемым воздухом легкие удаляют углекислый газ и воду. Кроме того через альвеолы легких удаляется большинство ароматических эфиров. Через легкие удаляются так же сивушные масла (опьянение).

Выделительная функция кожи

Сальные железы при нормальном функционировании выделяют конечные продукты обмена. Секрет сальных желез служит для смазывания кожи жиром. Выделительная функция молочных желез проявляется в период лактации. Поэтому при попадании в организм матери токсических и лекарственных веществ, эфирных масел они выделяются с молоком и могут оказывать воздействие на организм ребенка.

Собственно выделительными органами кожи являются потовые железы, которые удаляют конечные продукты обмена и тем самым участвуют в поддержании многих констант внутренней среды организма. С потом из организма удаляется вода, соли, молочная и мочевая кислоты, мочевина, креатинин. В норме доля потовых желез в удалении продуктов белкового обмена невелика, но при заболеваниях почек, особенно при острой почечной недостаточности, потовые железы значительно увеличивают объем выделяемых продуктов в результате увеличения потоотделения (до 2 л и более) и значительного увеличения содержания мочевины в поте. Иногда мочевины удаляется настолько много, что она в виде кристалликов откладывается на теле и белье больного. С потом могут удаляться токсины и лекарственные вещества. Для некоторых веществ потовые железы являются единственным органом выделения (например, мышьяковистая кислота, ртуть). Эти вещества, выделяясь с потом, накапливаются в волосяных луковицах, покровах, что позволяет определить наличие данных веществ в организме даже спустя много лет после его гибели.

Выделительная функция почек

Почки являются главными органами выделения . Им принадлежит ведущая роль в поддержании постоянной внутренней среды (гомеостаза).

Функции почек весьма обширны и принимают участие:

  • в регуляции объема крови и других жидкостей составляющих внутреннюю среду организма;
  • регулируют постоянное осмотическое давление крови и других жидкостей организма;
  • регулируют ионный состав внутренней среды;
  • регулируют кислотно-щелочное равновесие;
  • обеспечивают регуляцию выделения конечных продуктов азотистого обмена;
  • обеспечивают экскрецию избытка органических веществ, поступающих с пищей и образовавшихся в процессе обмена веществ (например, глюкозы или аминокислоты);
  • регулируют метаболизм (обмен веществ белков, жиров и углеводов);
  • участвуют в регуляции АД;
  • участвуют в регуляции эритропоэза;
  • участвуют в регуляции свертывания крови;
  • участвуют в секреции ферментов и физиологически активных веществ: ренин, брадикинин, простагландины, витамин D.

Структурно-функциональной единицей почки является нефрон, в нем осуществляются процесс мочеобразования. В каждой почке около 1 млн нефронов.

Образование конечной мочи является результатом трех главных процессов, происходящих в нефроне: , и секреции.

Клубочковая фильтрация

Образование мочи в почках начинается с фильтрации плазмы крови в почечных клубочках. На пути фильтрации воды и низкомолекулярных соединений имеется три барьера: эндотелий капилляров клубочка; базальная мембрана; внутренний листок капсулы клубочка.

При нормальной скорости кровотока крупные молекулы белка образуют барьерный слой на поверхности пор эндотелия, препятствуя прохождению через них форменных элементов и мелкодисперсных белков. Низкомолекулярные компоненты плазмы крови мог>т свободно достигать базальной мембраны, которая является одной из важнейших составных частей фильтрующей мембраны клубочка. Поры базальной мембраны ограничивают прохождение молекул в зависимости от их размера, формы и заряда. Отрицательно заряженная стенка пор затрудняет прохождение молекул с одноименным зарядом и ограничивает прохождение молекул размером более 4-5 нм. Последним барьером на пути фильтруемых веществ является внутренний листок капсулы клубочка, который образован эпителиальными клетками — подоцитами. Подоциты имеют отростки (ножки), которыми они прикрепляются к базальной мембране. Пространство между ножками перегораживается щелевыми мембранами, которые ограничивают прохождение альбуминов и других молекул с большой молекулярной массой. Таким образом, такой многослойный фильтр обеспечивает сохранение форменных элементов и белков в крови, и образование практически безбелкового ультрафильтрата — первичной мочи.

Основной силой, обеспечивающей фильтрацию в почечных клубочках, является гидростатическое давление крови в капиллярах клубочка. Эффективное фильтрационное давление, от которого зависит скорость клубочковой фильтрации, определяется разностью между гидростатическим давлением крови в капиллярах клубочка (70 мм рт. ст.) и противодействующими ему факторами — онкотическим давлением белков плазмы (30 мм рт. ст.) и гидростатическим давлением ультрафильтрата в капсуле клубочка (20 мм рт. ст.). Следовательно, эффективное фильтрационное давление равно 20 мм рт. ст. (70 — 30 — 20 = 20).

На величину фильтрации оказывают влияние различные внутри- почечные и внепочечные факторы.

К почечным факторам относятся: величина гидростатического давления крови в капиллярах клубочка; количество функционирующих клубочков; величина давления ультрафильтрата в капсуле клубочка; степень проницаемости капилляров клубочка.

К внепочечным факторам относятся: величина кровяного давления в магистральных сосудах (аорта, почечная артерия); скорость почечного кровотока; величина онкотического давления крови; функциональное состояние других выделительных органов; степень гидратации тканей (количество воды).

Канальцевая реабсорбция

Реабсорбция — обратное всасывание из первичной мочи в кровь воды и веществ, необходимых для организма. В почках человека за сутки образуется 150-180 л фильтрата или первичной мочи. Конечной или вторичной мочи выделяется около 1,5 л, остальная жидкая часть (т.е. 178,5 л) всасывается в канальцах и собирательных трубочках. Обратное всасывание различных веществ осуществляется за счет активного и пассивного транспорта. Если вещество реабсорбируется против концентрационного и электрохимического градиента (т.е. с затратой энергии), то такой процесс называется активным транспортом. Различают первично-активный и вторично-активный транспорт. Первично-активным транспортом называется перенос веществ против электрохимического градиента, осуществляется за счет энергии клеточного метаболизма. Пример: перенос ионов натрия, который происходит при участии фермента натрий-калий АТФазы, использующей энергию аденозинтрифосфата. Вторично-активным транспортом называется перенос веществ против концентрационного градиента, но без затраты энергии клетки. С помощью такого механизма происходит реабсорбция глюкозы и аминокислот.

Пассивный транспорт — происходит без затрат энергии и характеризуется тем, что перенос веществ происходит по электрохимическому, концентрационному и осмотическому градиенту. За счет пассивного транспорта реабсорбируются: вода, углекислый газ, мочевина, хлориды.

Реабсорбция веществ в различных отделах нефрона неодинакова. В проксимальном сегменте нефрона из ультрафильтрата в обычных условиях реабсорбируются глюкоза, аминокислоты, витамины, микроэлементы, натрий и хлор. В последующих отделах нефрона реабсорбируются только ионы и вода.

Большое значение в реабсорбции воды и ионов натрия, а также в механизмах концентрирования мочи имеет функционирование поворотно-противоточной системы. Петля нефрона имеет два колена — нисходящее и восходящее. Эпителий восходящего колена обладает способностью активно переносить ионы натрия в межклеточную жидкость, но стенка этого отдела непроницаема для воды. Эпителий нисходящего колена пропускает воду, но не имеет механизмов транспорта ионов натрия. Проходя через нисходящий отдел петли нефрона и отдавая воду, первичная моча становится более концентрированной. Реабсорбция воды происходит пассивно за счет того, что в восходящем отделе происходит активная реабсорбция ионов натрия, которые поступая в межклеточную жидкость, повышают в ней осмотическое давление и способствуют реабсорбции воды из нисходящих отделов.